Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Diode a Few Atoms Thick Shows Surprising Quantum Effect

22.06.2015

A quantum mechanical transport phenomenon demonstrated for the first time in synthetic, atomically-thin layered material at room temperature could lead to novel nanoelectronic circuits and devices, according to researchers at Penn State and three other U.S. and international universities.

The quantum transport effect, called negative differential resistance (NDR), was observed when a voltage was applied to structures made of one-atom-thick layers of several layered materials known as van der Waals materials. The three-part structures consist of a base of graphene followed by atomic layers of either molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), or tungsten diselenide (WSe2).


Yuchuan Lin, Penn State

Current-voltage curves of single junction (green) van der Waals solid (no NDR) and multijunction (red, orange) van der Waals solids (NDR). Stacking and choice of materials determines the location and width of peak.

NDR is a phenomenon in which the wave nature of electrons allows them to tunnel through any material with varying resistance. The potential of NDR lies in low voltage electronic circuits that could be operated at high frequency.

“Theory suggests that stacking two-dimensional layers of different materials one atop the other can lead to new materials with new phenomena,” says Joshua Robinson, a Penn State assistant professor of materials science and engineering whose student, Yu-Chuan Lin, is first author on a paper appearing online today, June 19, in the journal Nature Communications. The paper is titled “Atomically Thin Resonant Tunnel Diodes Built from Synthetic van der Waals Heterostructures.”

Achieving NDR in a resonant tunneling diode at room temperature requires nearly perfect interfaces, which are possible using direct growth techniques, in this case oxide vaporization of molybdenum oxide in the presence of sulfur vapor to make the MoS2 layer, and metal organic chemical vapor deposition to make the WSe2 and MoSe2.

“This is the first time these vertical heterostructures have been grown like this,” Robinson says. “People typically use exfoliated materials that they stack, but it has been extremely difficult to see this phenomenon with exfoliated layers, because the interfaces are not clean. With direct growth we get pristine interfaces where we see this phenomenon every time.”

What caught Lin and Robinson’s attention was a sharp peak and valley in their electrical measurements where there would normally be a regular upward slope. Any unexpected phenomenon, if it is repeatable, is of interest, Robinson says. To explain their results, they consulted an expert in nanoscale electronic devices, Suman Datta, who told them they were seeing a 2D version of a resonant tunneling diode, a quantum mechanical device that operates at low power.

“Resonant tunnel diodes are important circuit components,” says Datta, a coauthor on the paper and Penn State professor of electrical engineering. “Resonant tunneling diodes with NDR can be used to build high frequency oscillators. What this means is we have built the world’s thinnest resonant tunneling diode, and it operates at room temperature!”

Coauthor Robert Wallace of the University of Texas at Dallas says this collaborative work represents an important achievement in the realization of useful 2D integrated circuits. “The ability to observe the resonant behavior at room temperature with synthesized 2D materials rather than exfoliated, stacked flakes is exciting as it points toward the possibilities for scalable device fabrication methods that are more compatible with industrial interests. The challenge we now must address includes improving the grown 2D materials further and obtaining better performance for future device applications,” says Wallace. The UT-Dallas coauthors provided the detailed atomic resolution materials characterization for the resonant tunneling diodes discovered at Penn State.

Datta credits a theoretical understanding of the electron transport in the 2D layered materials to his post-doc, Ram Krishna Ghosh, whose calculations show close correspondence to the experimental results. Datta cautions that the new resonant tunnel diode is just one element in a circuit and the next step will require building and integrating the other circuit elements, such as transistors, in 2D. “The take home message,” he says, “is that this gives us a nugget that we as device and circuit people can start playing around with and build useful circuits for 2D electronics.”

Other coauthors include Sarah Eichfield at Penn State, Rafik Addou, Ning Lu, Hui Zhu, Xin Peng, and Moon Kim, all at UT-Dallas, Ming-Yang Li at Institute of Atomic and Molecular Sciences, Taiwan, and Lain-Jong Li, at King Abdullah University of Science and Technology, Saudi Arabia. The work was performed in conjunction with the Center for Two-Dimensional and Layered Materials (2DLM) at Penn State and supported by the Semiconductor Research Corporation and DARPA through the Center for Low Energy Systems Technology. Work at UT-Dallas was also supported through the Southwest Academy on Nanoelectronics sponsored by the Nanoelectronics Research Initiative and NIST.

DOI 10.1038/ncomms8311

About the Center for Two Dimensional and Layered Materials at Penn State

The 2DLM Center conducts multidisciplinary research in the fast emerging field of atomically thin layered materials. Based in Penn State’s Materials Research Institute, the Center works with industry partners, national labs, and academic collaborators to discover and predict new properties that arise when novel materials are created one atomic layer at a time. Visit the website at http://www.mri.psu.edu/centers/2dlm/ 

Contact Information
Walter Mills
Associate Editor Publications
wem12@psu.edu
Phone: 814-865-0285

Walter Mills | newswise
Further information:
http://www.psu.edu

Further reports about: Atoms Diode MoS2 QUANTUM Technology diodes materials molybdenum phenomenon resistance room temperature structures temperature voltage

More articles from Materials Sciences:

nachricht Transporting spin: A graphene and boron nitride heterostructure creates large spin signals
16.08.2017 | Graphene Flagship

nachricht From hot to cold: How to move objects at the nanoscale
10.08.2017 | Scuola Internazionale Superiore di Studi Avanzati

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>