Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Dash of Disorder Yields a Very Efficient Photocatalyst

31.01.2011
Research could lead to cheap, clean ways to produce hydrogen for use in fuel cells

A little disorder goes a long way, especially when it comes to harnessing the sun’s energy. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) jumbled the atomic structure of the surface layer of titanium dioxide nanocrystals, creating a catalyst that is both long lasting and more efficient than most materials in using the sun’s energy to extract hydrogen from water.

A nanoscale look at a photocatalyst that is both durable and very efficient. This high-resolution transmission electron microscope image of a titanium dioxide nanocrystal after hydrogenation reveals engineered disorder on the crystal's surface, a change that enables the photocatalyst to absorb infrared light.

Their photocatalyst, which accelerates light-driven chemical reactions, is the first to combine durability and record-breaking efficiency, making it a contender for use in several clean-energy technologies.

It could offer a pollution-free way to produce hydrogen for use as an energy carrier in fuel cells. Fuel cells have been eyed as an alternative to combustion engines in vehicles. Molecular hydrogen, however, exists naturally on Earth only in very low concentrations. It must be extracted from feedstocks such as natural gas or water, an energy-intensive process that is one of the barriers to the widespread implementation of the technology.

“We are trying to find better ways to generate hydrogen from water using sunshine,” says Samuel Mao, a scientist in Berkeley Lab’s Environmental Energy Technologies Division who led the research. “In this work, we introduced disorder in titanium dioxide nanocrystals, which greatly improves its light absorption ability and efficiency in producing hydrogen from water.”

Mao is the corresponding author of a paper on this research that was published online Jan. 20, 2011 in Science Express with the title “Increasing Solar Absorption for Photocatalysis with Black, Hydrogenated Titanium Dioxide Nanocrystals.” Co-authoring the paper with Mao are fellow Berkeley Lab researchers Xiaobo Chen, Lei Liu, and Peter Yu.

Mao and his research group started with nanocrystals of titanium dioxide, which is a semiconductor material that is used as a photocatalyst to accelerate chemical reactions, such as harnessing energy from the sun to supply electrons that split water into oxygen and hydrogen. Although durable, titanium dioxide isn’t a very efficient photocatlayst. Scientists have worked to increase its efficiency by adding impurities and making other modifications.

The Berkeley Lab scientists tried a new approach. In addition to adding impurities, they engineered disorder into the ordinarily perfect atom-by-atom lattice structure of the surface layer of titanium dioxide nanocrystals. This disorder was introduced via hydrogenation.

The result is the first disorder-engineered nanocrystal. One transformation was obvious: the usually white titanium dioxide nanocrystals turned black, a sign that engineered disorder yielded infrared absorption.

The scientists also surmised disorder boosted the photocatalyst’s performance. To find out if their hunch was correct, they immersed disorder-engineered nanocrystals in water and exposed them to simulated sunlight. They found that 24 percent of the sunlight absorbed by the photocatalyst was converted into hydrogen when using a sacrificial reagent, a production rate that is about 100 times greater than the yields of most semiconductor photocatalysts under the same conditions. More work needs to be done in order to reach comparable efficiency without the use of a sacrificial reagent, according to Mao.

In addition, their photocatalyst did not show any signs of degradation during a 22-day testing period, meaning it is potentially durable enough for real-world use.

Its landmark efficiency stems largely from the photocatalyst’s ability to absorb infrared light, making it the first titanium dioxide photocatalyst to absorb light in this wavelength. It also absorbs visible and ultraviolet light. In contrast, most titanium dioxide photocatalysts only absorbs ultraviolet light, and those containing defects may absorb visible light. Ultraviolet light accounts for less than ten percent of solar energy.

“The more energy from the sun that can be absorbed by a photocatalyst, the more electrons can be supplied to a chemical reaction, which makes black titanium dioxide a very attractive material,” says Mao, who is also an adjunct engineering professor in the University of California at Berkeley.

The team’s intriguing experimental findings were further elucidated by theoretical physicists Peter Yu and Lei Liu, who explored how jumbling the latticework of atoms on the nanocrystal’s surface via hydrogenation changes its electronic properties. Their calculations revealed that disorder, in the form of lattice defects and hydrogen, makes it possible for incoming photons to excite electrons, which then jump across a gap where no electron states can exist. Once across this gap, the electrons are free to energize the chemical reaction that splits water into hydrogen and oxygen.

“By introducing a specific kind of disorder, mid-gap electronic states are created accompanied by a reduced band gap,” says Yu, who is also a professor in the University of California at Berkeley’s Physics Department. “This makes it possible for the infrared part of the solar spectrum to be absorbed and contribute to the photocatalysis.”

This research was supported by the Department of Energy’s Office of Energy Efficiency and Renewable Energy. Transmission electron microscopy imaging used to study the nanocrystals at the atomic scale was performed at the National Center for Electron Microscopy, a national user facility located at Berkeley Lab.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov
http://newscenter.lbl.gov/news-releases/2011/01/28/photocatalyst/

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>