Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A coating that prevents barnacles forming colonies

05.10.2011
It is not necessary for an effective anti-fouling coating to release toxins into the environment.

Scientists at the University of Gothenburg have shown that it is instead possible to mix into the coating molecules on which the adult barnacles cannot grow. The result has been published in the scientific journal Biofouling.


Part of the hull of a planing boat that has been painted with a copper-free TF paint with trace amounts of a macrocyclic lactone (Ivermectin). The broad stripe in the centre was painted with TF paint without additive. The boat was used in traffic on the western coast of Sweden for four months in the summer of 2009. Boat owner: Mauritz Palm. Photo: Mats Hulander

Fouling of hulls is a problem for all boat owners, and one of the most difficult organisms to deal with is barnacles. A research group at the Department of Cell and Molecular Biology has therefore studied the biology of barnacles in detail, and focussed on one particularly sensitive stage in the barnacle life cycle.

“When newly matured adult barnacles attempt to penetrate through the coating in order to establish a fixed location to grow, they are extremely sensitive to certain molecules known as ‘macrocyclic lactones’, which are normally produced by certain bacteria”, says Professor Hans-Björne Elwing of the Department of Cell and Molecular Biology at the University of Gothenburg.

A better effect with no toxin released to the environment
When such molecules are mixed into the anti-fouling coating, the treated surface is first colonised by barnacles in the normal way. But as soon as the young barnacles have matured into adults and attempt to establish stronger contact with the surface, they lose contact and probably die. It is also the case that certain brown algae counteract the colonisation by barnacles on the surfaces of leaves in a similar manner.

“Using this discovery, we have managed to create coatings with new binding agents that shut down the release of the macrocyclic lactones into the marine environment. Further, only trace amounts of the macrocyclic lactones are required in the coating to give full effect against barnacles.”

The research group has shown through field trials on leisure craft that the addition of macrocyclic lactones can fully replace copper in coatings used on such craft, on both the eastern and the western coasts of Sweden, and for several seasons.

“While it is true that it is only barnacles that are affected by the additive, the growth of algae and similar organisms can be counteracted relatively simply by other methods.”

The study has been carried out by Emiliano Pinori, Mattias Berglin, Mats Hulander, Mia Dahlström and Hans Elwing at the University of Gothenburg, in collaboration with Lena Brive at the SP Technical Research Institute of Sweden in Borås. The article Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings has been published in the journal Biofouling.

Bibliographic data:
Title: Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings
Jounral: Biofouling
Authors: Emiliano Pinoriab, Mattias Berglina, Lena M. Briveb, Mats Hulandera, Mia Dahlströma & Hans Elwinga*
For further information, please contact:
Hans-Björne Elwing, Department of Cell and Molecular Biology, University of Gothenburg
Tel: +46 31 786 2562
Mobile: +46 733 604607
hans.elwing@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.tandfonline.com/doi/abs/10.1080/08927014.2011.616636

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>