Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Close-up View of Materials as they Stretch or Compress

09.09.2015

A team of researchers has created a new tool to nondestructively characterize structural materials in unprecedented detail as they deform, which, in turn, could lead to aerospace components that are lighter and more tolerant to damage.

Materials scientists are busy developing advanced materials, while also working to squeeze every bit of performance out of existing materials. This is particularly true in the aerospace industry, where small advantages in weight or extreme temperature tolerance quickly translate into tremendous performance benefits.


Review of Scientific Instruments

This setup is used for high-energy diffraction microscopy experiments—it involves a rotational and axial motion system load frame insert in a conventional load frame along with near-field and far-field detectors. The loading axis is vertical, and the specimen and specimen grips rotate around the loading axis while the rest of the setup remains stationary.

The potential pay-offs motivated a team of researchers from the Air Force Research Laboratory, the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University and PulseRay to work together to pursue their shared goal of characterizing structural materials in unprecedented detail.

In a paper in Review of Scientific Instruments, from AIP Publishing, the group describes how they created a system to squeeze and stretch a material while at the same time rotating and bombarding it with high-energy synchrotron X-rays. The X-rays capture information about how the material responds to the mechanical stress.

“This required developing a loading system to enable the precise rotation of a sample while simultaneously and independently applying tensile or compressive axial loading,” explained Paul A. Shade, lead author and a materials research engineer for the Air Force Research Laboratory at Wright-Patterson Air Force Base.

Their approach included “developing and validating micromechanical models to help us understand the sources of failure in materials so that we can produce aerospace components that are lighter and more damage tolerant -- while also gaining a more complete understanding of their service lifetime capability,” Shade added.

The main significance of the team’s new tool is that “the RAMS load frame insert enables applying axial loads while the specimen is continuously rotated, which means that we can integrate near-field and far-field high-energy diffraction microscopy methods and microtomography with in situ mechanical testing,” said Shade. “This allows us to nondestructively characterize the microstructure and micromechanical state of a deforming material—providing critical validation data for microstructure-sensitive performance-prediction models.”

The materials community is interested in using the team's tool as part of an integrated computational materials engineering approach to design structural components -- which could help optimize materials properties and reduce uncertainty for given applications. The measurements that this tool enables can be used to develop new materials for turbine engines, car parts and industrial machinery, to name just a few applications.

“An important aspect is to develop trusted materials models whose performance has been validated at the appropriate length scale,” Shade said.

The next step for the team will be partnering with researchers at the Cornell High Energy Synchronous Source (CHESS), Cornell University and the Advanced Photon Source (APS) at Argonne National Laboratory to develop standalone RAMS load frames. “These instruments will be made available to the high-energy synchrotron X-ray community and, in fact, have already been used by many researchers and institutions,” Shade noted.

The team is currently working with CHESS and APS to develop elevated temperature and multi-axial loading capabilities. The RAMS load frame insert has also inspired the development of a tension in-vacuum furnace design for studying irradiated materials at APS that was developed in concert with the Nuclear Engineering Division at Argonne National Laboratory.

“We plan to host the datasets we collect from these experiments for others in the community to use -- especially to test new materials models,” Shade said. “In this manner, we’ll help propel the community to develop microstructure-sensitive materials models and provide the validation needed to push materials to the next level of performance.”

The article, “A rotational and axial motion system load frame insert for in situ high- energy x-ray studies,” is authored by Paul A. Shade, Basil Blank, Jay C. Schuren, Todd J. Turner, Peter Kenesei, Kurt Goetze, Robert M. Suter, Joel V. Bernier, Shiu Fai Li, Jonathan Lind, Ulrich Lienert and Jonathan Almer. It appears in the journal Review of Scientific Instruments on September 8, 2015. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/rsi/86/9/10.1063/1.4927855 

The authors of this paper are affiliated with Air Force Research Laboratory, PulseRay, Argonne National Laboratory, Carnegie Mellon University and Lawrence Livermore National Laboratory.

ABOUT THE JOURNAL

The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines. See http://rsi.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi | newswise

Further reports about: AIP RAMS Review of Scientific Instruments materials physics

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>