Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Close-up View of Materials as they Stretch or Compress


A team of researchers has created a new tool to nondestructively characterize structural materials in unprecedented detail as they deform, which, in turn, could lead to aerospace components that are lighter and more tolerant to damage.

Materials scientists are busy developing advanced materials, while also working to squeeze every bit of performance out of existing materials. This is particularly true in the aerospace industry, where small advantages in weight or extreme temperature tolerance quickly translate into tremendous performance benefits.

Review of Scientific Instruments

This setup is used for high-energy diffraction microscopy experiments—it involves a rotational and axial motion system load frame insert in a conventional load frame along with near-field and far-field detectors. The loading axis is vertical, and the specimen and specimen grips rotate around the loading axis while the rest of the setup remains stationary.

The potential pay-offs motivated a team of researchers from the Air Force Research Laboratory, the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University and PulseRay to work together to pursue their shared goal of characterizing structural materials in unprecedented detail.

In a paper in Review of Scientific Instruments, from AIP Publishing, the group describes how they created a system to squeeze and stretch a material while at the same time rotating and bombarding it with high-energy synchrotron X-rays. The X-rays capture information about how the material responds to the mechanical stress.

“This required developing a loading system to enable the precise rotation of a sample while simultaneously and independently applying tensile or compressive axial loading,” explained Paul A. Shade, lead author and a materials research engineer for the Air Force Research Laboratory at Wright-Patterson Air Force Base.

Their approach included “developing and validating micromechanical models to help us understand the sources of failure in materials so that we can produce aerospace components that are lighter and more damage tolerant -- while also gaining a more complete understanding of their service lifetime capability,” Shade added.

The main significance of the team’s new tool is that “the RAMS load frame insert enables applying axial loads while the specimen is continuously rotated, which means that we can integrate near-field and far-field high-energy diffraction microscopy methods and microtomography with in situ mechanical testing,” said Shade. “This allows us to nondestructively characterize the microstructure and micromechanical state of a deforming material—providing critical validation data for microstructure-sensitive performance-prediction models.”

The materials community is interested in using the team's tool as part of an integrated computational materials engineering approach to design structural components -- which could help optimize materials properties and reduce uncertainty for given applications. The measurements that this tool enables can be used to develop new materials for turbine engines, car parts and industrial machinery, to name just a few applications.

“An important aspect is to develop trusted materials models whose performance has been validated at the appropriate length scale,” Shade said.

The next step for the team will be partnering with researchers at the Cornell High Energy Synchronous Source (CHESS), Cornell University and the Advanced Photon Source (APS) at Argonne National Laboratory to develop standalone RAMS load frames. “These instruments will be made available to the high-energy synchrotron X-ray community and, in fact, have already been used by many researchers and institutions,” Shade noted.

The team is currently working with CHESS and APS to develop elevated temperature and multi-axial loading capabilities. The RAMS load frame insert has also inspired the development of a tension in-vacuum furnace design for studying irradiated materials at APS that was developed in concert with the Nuclear Engineering Division at Argonne National Laboratory.

“We plan to host the datasets we collect from these experiments for others in the community to use -- especially to test new materials models,” Shade said. “In this manner, we’ll help propel the community to develop microstructure-sensitive materials models and provide the validation needed to push materials to the next level of performance.”

The article, “A rotational and axial motion system load frame insert for in situ high- energy x-ray studies,” is authored by Paul A. Shade, Basil Blank, Jay C. Schuren, Todd J. Turner, Peter Kenesei, Kurt Goetze, Robert M. Suter, Joel V. Bernier, Shiu Fai Li, Jonathan Lind, Ulrich Lienert and Jonathan Almer. It appears in the journal Review of Scientific Instruments on September 8, 2015. After that date, it can be accessed at: 

The authors of this paper are affiliated with Air Force Research Laboratory, PulseRay, Argonne National Laboratory, Carnegie Mellon University and Lawrence Livermore National Laboratory.


The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines. See

Contact Information
Jason Socrates Bardi
+1 240-535-4954

Jason Socrates Bardi | newswise

Further reports about: AIP RAMS Review of Scientific Instruments materials physics

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>