Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D eddy current scanner for CFRP

26.02.2014

Carbon fiber reinforced plastics (CFRP) allow reducing the weight of aircraft and automobiles without losing stiffness, dynamic stability or strength.

However, this is valid for defect-free material only. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS develops eddy current based diagnosis systems (EddyCUS®) by which CFRPs can be tested along the process chain, from the raw carbon fiber material to the production of complete assemblies made of CFRP.


At the JEC Composites Show (Paris, March 11-13, 2014) Fraunhofer IKTS will demonstrate the EddyCUS® system in a joint booth of the Saxony Economic Development Corporation (Hall 7/2, Booth K35).

By developing a robot based 3D eddy current scanning system, the Fraunhofer Institute for Ceramic Technologies and Systems, branch Materials Diagnostics, accomplished an important step towards production-integrated diagnosis of CFRP. This system combines the following advantages:

­Contactless testing of 3D structures

­Compared to ultrasonic testing a superior lateral resolution and penetration depth

­Rapid adaptation to different testing tasks

­Ease of application without radiation protection or coupling media

­High velocity up to 500 mm/s

­Automatic compensation of unevenness at the testing surface

­High defect sensitivity due to multi frequency testing and direction dependent probes


3D eddy current scanning system

Eddy current based testing methods use the electric properties of carbon fibers for quality evaluation. Because of their ease of application (without coupling media, no radiation protection necessary) they are especially suited for rapid close-to-production testing. Due to its generation of distortion-free conductivity images, the universally parametrizable eddy current scanner EddyCUS® of Fraunhofer IKTS can also be used at 3D structures. The component to be tested is digitalized process-integrated with a stripe-light camera. Based on an automatically calculated path, the robot guides the eddy current sensor orthogonally across the surface. The measuring results are composed to a scanning image (C scan).

 A fast adaptation to testing tasks is enabled by a virtually adjusted surface digitalization and surface calculation. Unevenness is compensated nearly completely to keep liftoff effects minimal. Besides high scanning velocity at high resolution, significant properties are preferentially sensor tracing on sloped, planar surfaces and a flexible parametrization of the easily interchangeable sensors. The standard device can capture a maximum surface of 300 x 300 mm at a velocity of 500 mm/s and a sample rate of 3000 S/s. In addition, the EddyCUS® software offers a sequential multi frequency recording of up to four frequencies. Together with direction dependent probes this allows an exact differentiation of defect types.

The Fraunhofer-Gesellschaft is the leading organization for applied research in Europe. Its research activities are conducted by 67 institutes and research units. The Fraunhofer-Gesellschaft employs a staff of more than 23,000, who work with an annual research budget of 2 billion euros. Of this sum, more than 1.7 billion euros is generated through contract research. More than 70 percent of the Fraunhofer-Gesellschaft’s contract research revenue is derived from contracts with industry and from publicly financed research projects. International collaborations ensure direct access to regions of the greatest importance to present and future scientific progress and economic development.

Contact
Jun.-Prof. Dr.-Ing. Henning Heuer
Fraunhofer Institute for Ceramic Technologies and Systems
Branch Materials Diagnostics IKTS-MD
Phone +49 351 88815-630
henning.heuer@ikts-md.fraunhofer.de 

Katrin Schwarz | Fraunhofer-Institut
Further information:
http://www.ikts-md.fraunhofer.de

More articles from Materials Sciences:

nachricht Nanobionics Supercharge Photosynthesis
22.05.2015 | Department of Energy, Office of Science

nachricht Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies
22.05.2015 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>