Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D eddy current scanner for CFRP

26.02.2014

Carbon fiber reinforced plastics (CFRP) allow reducing the weight of aircraft and automobiles without losing stiffness, dynamic stability or strength.

However, this is valid for defect-free material only. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS develops eddy current based diagnosis systems (EddyCUS®) by which CFRPs can be tested along the process chain, from the raw carbon fiber material to the production of complete assemblies made of CFRP.


At the JEC Composites Show (Paris, March 11-13, 2014) Fraunhofer IKTS will demonstrate the EddyCUS® system in a joint booth of the Saxony Economic Development Corporation (Hall 7/2, Booth K35).

By developing a robot based 3D eddy current scanning system, the Fraunhofer Institute for Ceramic Technologies and Systems, branch Materials Diagnostics, accomplished an important step towards production-integrated diagnosis of CFRP. This system combines the following advantages:

­Contactless testing of 3D structures

­Compared to ultrasonic testing a superior lateral resolution and penetration depth

­Rapid adaptation to different testing tasks

­Ease of application without radiation protection or coupling media

­High velocity up to 500 mm/s

­Automatic compensation of unevenness at the testing surface

­High defect sensitivity due to multi frequency testing and direction dependent probes


3D eddy current scanning system

Eddy current based testing methods use the electric properties of carbon fibers for quality evaluation. Because of their ease of application (without coupling media, no radiation protection necessary) they are especially suited for rapid close-to-production testing. Due to its generation of distortion-free conductivity images, the universally parametrizable eddy current scanner EddyCUS® of Fraunhofer IKTS can also be used at 3D structures. The component to be tested is digitalized process-integrated with a stripe-light camera. Based on an automatically calculated path, the robot guides the eddy current sensor orthogonally across the surface. The measuring results are composed to a scanning image (C scan).

 A fast adaptation to testing tasks is enabled by a virtually adjusted surface digitalization and surface calculation. Unevenness is compensated nearly completely to keep liftoff effects minimal. Besides high scanning velocity at high resolution, significant properties are preferentially sensor tracing on sloped, planar surfaces and a flexible parametrization of the easily interchangeable sensors. The standard device can capture a maximum surface of 300 x 300 mm at a velocity of 500 mm/s and a sample rate of 3000 S/s. In addition, the EddyCUS® software offers a sequential multi frequency recording of up to four frequencies. Together with direction dependent probes this allows an exact differentiation of defect types.

The Fraunhofer-Gesellschaft is the leading organization for applied research in Europe. Its research activities are conducted by 67 institutes and research units. The Fraunhofer-Gesellschaft employs a staff of more than 23,000, who work with an annual research budget of 2 billion euros. Of this sum, more than 1.7 billion euros is generated through contract research. More than 70 percent of the Fraunhofer-Gesellschaft’s contract research revenue is derived from contracts with industry and from publicly financed research projects. International collaborations ensure direct access to regions of the greatest importance to present and future scientific progress and economic development.

Contact
Jun.-Prof. Dr.-Ing. Henning Heuer
Fraunhofer Institute for Ceramic Technologies and Systems
Branch Materials Diagnostics IKTS-MD
Phone +49 351 88815-630
henning.heuer@ikts-md.fraunhofer.de 

Katrin Schwarz | Fraunhofer-Institut
Further information:
http://www.ikts-md.fraunhofer.de

More articles from Materials Sciences:

nachricht Personal cooling units on the horizon
29.04.2016 | Penn State

nachricht Exploring phosphorene, a promising new material
29.04.2016 | Rensselaer Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>