Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D eddy current scanner for CFRP

26.02.2014

Carbon fiber reinforced plastics (CFRP) allow reducing the weight of aircraft and automobiles without losing stiffness, dynamic stability or strength.

However, this is valid for defect-free material only. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS develops eddy current based diagnosis systems (EddyCUS®) by which CFRPs can be tested along the process chain, from the raw carbon fiber material to the production of complete assemblies made of CFRP.


At the JEC Composites Show (Paris, March 11-13, 2014) Fraunhofer IKTS will demonstrate the EddyCUS® system in a joint booth of the Saxony Economic Development Corporation (Hall 7/2, Booth K35).

By developing a robot based 3D eddy current scanning system, the Fraunhofer Institute for Ceramic Technologies and Systems, branch Materials Diagnostics, accomplished an important step towards production-integrated diagnosis of CFRP. This system combines the following advantages:

­Contactless testing of 3D structures

­Compared to ultrasonic testing a superior lateral resolution and penetration depth

­Rapid adaptation to different testing tasks

­Ease of application without radiation protection or coupling media

­High velocity up to 500 mm/s

­Automatic compensation of unevenness at the testing surface

­High defect sensitivity due to multi frequency testing and direction dependent probes


3D eddy current scanning system

Eddy current based testing methods use the electric properties of carbon fibers for quality evaluation. Because of their ease of application (without coupling media, no radiation protection necessary) they are especially suited for rapid close-to-production testing. Due to its generation of distortion-free conductivity images, the universally parametrizable eddy current scanner EddyCUS® of Fraunhofer IKTS can also be used at 3D structures. The component to be tested is digitalized process-integrated with a stripe-light camera. Based on an automatically calculated path, the robot guides the eddy current sensor orthogonally across the surface. The measuring results are composed to a scanning image (C scan).

 A fast adaptation to testing tasks is enabled by a virtually adjusted surface digitalization and surface calculation. Unevenness is compensated nearly completely to keep liftoff effects minimal. Besides high scanning velocity at high resolution, significant properties are preferentially sensor tracing on sloped, planar surfaces and a flexible parametrization of the easily interchangeable sensors. The standard device can capture a maximum surface of 300 x 300 mm at a velocity of 500 mm/s and a sample rate of 3000 S/s. In addition, the EddyCUS® software offers a sequential multi frequency recording of up to four frequencies. Together with direction dependent probes this allows an exact differentiation of defect types.

The Fraunhofer-Gesellschaft is the leading organization for applied research in Europe. Its research activities are conducted by 67 institutes and research units. The Fraunhofer-Gesellschaft employs a staff of more than 23,000, who work with an annual research budget of 2 billion euros. Of this sum, more than 1.7 billion euros is generated through contract research. More than 70 percent of the Fraunhofer-Gesellschaft’s contract research revenue is derived from contracts with industry and from publicly financed research projects. International collaborations ensure direct access to regions of the greatest importance to present and future scientific progress and economic development.

Contact
Jun.-Prof. Dr.-Ing. Henning Heuer
Fraunhofer Institute for Ceramic Technologies and Systems
Branch Materials Diagnostics IKTS-MD
Phone +49 351 88815-630
henning.heuer@ikts-md.fraunhofer.de 

Katrin Schwarz | Fraunhofer-Institut
Further information:
http://www.ikts-md.fraunhofer.de

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>