Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D Atomic Imaging by Internal-Detector Electron Holography

05.09.2011
Researchers succeed to produce 3D atomic imaging of photoelectron holography.

Institute for Materials Research (IMR) of Tohoku University, HORIBA Limited, and Tohoku Techno Arch Company, Limited announced on July 19, 2011 that a research group led by associate professor of IMR, Kouichi Hayashi has succeeded in 3D atomic imaging by a time-inverted version of photoelectron holography. Details were published in Physical Review Letters*.

Determination of atomic arrangement in a material will be an important step to understand its properties and to create novel advanced materials. The research group constructed an apparatus for internal-detector electron holography based on a scanning electron microscope (SEM).

Using an energy-dispersive x-ray detector, an electron gun, and a computer-controllable sample stage, a multiple-energy hologram of the atomic arrangement around the Ti atom in SrTiO3 is obtained by recording the characteristic Ti Ká x-ray spectra for different electron beam angles and wavelengths.

A real-space image was obtained by using a fitting-based reconstruction algorithm SPEA-MEM. 3D atomic images of the elements Sr, Ti, and O in SrTiO3 were clearly visualized. Broadening of O-atom image is observed to show O-atom fluctuation, suggesting the ability of the present method for providing advanced information on the atomic structure analysis.

*Akio Uesaka, Kouichi Hayashi, Tomohiro Matsushita, and Shigetoshi Arai, "3D Atomic Imaging by Internal-Detector Electron Holography", Physical Review Letters, Vol. 107, No. 3, p. 045502 (2011) [4 pages]. Doi: 10,113/PhysRevLett.107.045502; published 19 July 2011.

This article first appeared in the August 2011 issue of Nanotech Japan Bulletin

Mikiko Tanifuji | Research asia research news
Further information:
http://www.tohoku.ac.jp/english/2011/07/press20110722-01.html
http://www.researchsea.com

Further reports about: Atomic Electron IMR Internal-Detector O-atom SrTiO3 algorithm holography

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>