Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

300 kilometres per second to new electronics

22.06.2015

A material with superfast electrons that exhibits extremely large magnetoresistance may be suitable for use in electronic components

It may be significantly easier to design electronic components in future. Scientists at the Max Planck Institute for Chemical Physics of Solids have discovered that the electrical resistance of a compound of niobium and phosphorus increases enormously when the material is exposed to a magnetic field.


High resistance thanks to fast electrons: The charge carriers (blue: electrons, red: holes) of a semiconductor are defected from their original direction of flow (green arrow) by a magnetic field (black arrows). The faster the electrons are moving, the more strongly they are deflected from the original direction of flow and the greater is the electric resistance. This effect is especially large in niobium phosphide, as the material possesses especially fast electrons.

© Yulin Chen

This extremely large magnetoresistance, which is responsible for the large storage capacity of modern hard discs, was previously known to occur in some complex materials. Niobium phosphide or a material with similar properties which can be manufactured more easily could offer an alternative.

The Max Planck researchers, together with colleagues from the High-Field Magnet Laboratory of the Helmholtz-Zentrum Dresden-Rossendorf and Radboud University in the Netherlands, published the new findings on niobium phosphide in the journal Nature Physics.

Electronic systems are expected to process and store a steadily increasing amount of data, faster and faster, and in less space. Luckily, physicists discover effects that help engineers to develop better electronic components with surprising regularity, for instance a phenomenon known as extremely large magnetoresistance. Modern hard discs utilize this phenomenon to significantly alter the resistance of a material by exposing it to a magnetic field. Until now, the computer industry has used various materials stacked on top of each other in a filigree structure to achieve this effect. Now, Max Planck scientists in Dresden have observed a rapid increase in resistance by a factor of 10,000 in a non-complex material, namely niobium phosphide (NbP).

The resistance of niobium phosphide changes so dramatically in a magnetic field, because the charge carriers are deflected by a phenomenon known as the Lorentz force. This force causes an increasing percentage of electrons to start flowing in the “wrong” direction as the magnetic field is ramped up, thus increasing the electric resistance. Consequently, this property is known as magnetoresistance.

Superfast electrons cause extremely large magnetoresistance

“The faster the electrons in the material move, the greater the Lorentz force and thus the effect of a magnetic field,” explains Binghai Yan, a researcher at the Max Planck Institute for Chemical Physics of Solids in Dresden. He and his colleagues therefore came up with the idea of investigating a compound consisting of the transition metal niobium (Nb) and phosphorus. This material contains superfast charge carriers, known as relativistic electrons that move at around one thousandth the speed of light, or 300 kilometres per second.

For their investigations, the scientists used the High-Field Magnet Laboratory in Dresden, as well as the High-Field Magnet Laboratory at Radboud University in Nijmegen and the Diamond Light Source in Oxfordshire, England. In the process, they discovered why the electrons are so fast and mobile. The material owes its exotic properties to unusual electronic states in niobium phosphide. Some electrons in this material, known as a Weyl metal, act as if they have no mass. As a result, they are able to move very rapidly. Binhai Yan is convinced that “the effect that we’ve discovered in niobium phosphide could certainly be improved upon by means of skilled material design. This material class therefore has enormous potential for future applications in information technology.”


Contact
Prof. Dr. Claudia Felser
Max Planck Institute for Chemical Physics of Solids, Dresden
Phone: +49 351 4646-3001

Fax: +49 351 4646-3002

Email: Claudia.Felser@cpfs.mpg.de

 
Dr. Binghai Yan
Max Planck Institute for Chemical Physics of Solids, Dresden
Phone: +49 351 4646-2237

Email: yan@cpfs.mpg.de


Original publication
Dr Binghai Yan, et al.

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Nature Physics (2015), DOI:10.1038/nphys3372

Prof. Dr. Claudia Felser | Max Planck Institute for Chemical Physics of Solids, Dresden
Further information:
http://www.mpg.de/9283656/large-magnetoresistance-electronics

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>