Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D printing produces cartilage from strands of bioink


Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is also a tissue that cannot repair itself. Once cartilage is damaged, it remains damaged.

A plug of 3-D bioprinted cartilage on top of a plug of osteocondral material -- bone and cartilage. The bone sits in a bath of nutrient media.

Credit: Ozbolat, Penn State

Previous attempts at growing cartilage began with cells embedded in a hydrogel -- a substance composed of polymer chains and about 90 percent water -- that is used as a scaffold to grow the tissue.

"Hydrogels don't allow cells to grow as normal," said Ozbolat, who is also a member of the Penn State Huck Institutes of the Life Sciences. "The hydrogel confines the cells and doesn't allow them to communicate as they do in native tissues."

This leads to tissues that do not have sufficient mechanical integrity. Degradation of the hydrogel also can produce toxic compounds that are detrimental to cell growth.

Ozbolat and his research team developed a method to produce larger scale tissues without using a scaffold. They create a tiny -- from 3 to 5 one hundredths of an inch in diameter -- tube made of alginate, an algae extract. They inject cartilage cells into the tube and allow them to grow for about a week and adhere to each other. Because cells do not stick to alginate, they can remove the tube and are left with a strand of cartilage. The researchers reported their results in the current issue of Scientific Reports.

The cartilage strand substitutes for ink in the 3D printing process. Using a specially designed prototype nozzle that can hold and feed the cartilage strand, the 3D printer lays down rows of cartilage strands in any pattern the researchers choose. After about half an hour, the cartilage patch self-adheres enough to move to a petri dish. The researchers put the patch in nutrient media to allow it to further integrate into a single piece of tissue. Eventually the strands fully attach and fuse together.

"We can manufacture the strands in any length we want," said Ozbolat. "Because there is no scaffolding, the process of printing the cartilage is scalable, so the patches can be made bigger as well. We can mimic real articular cartilage by printing strands vertically and then horizontally to mimic the natural architecture."

The artificial cartilage produced by the team is very similar to native cow cartilage. However, the mechanical properties are inferior to those of natural cartilage, but better than the cartilage that is made using hydrogel scaffolding. Natural cartilage forms with pressure from the joints, and Ozbolat thinks that mechanical pressure on the artificial cartilage will improve the mechanical properties.

If this process is eventually applied to human cartilage, each individual treated would probably have to supply their own source material to avoid tissue rejection. The source could be existing cartilage or stem cells differentiated into cartilage cells.


Also working on this project were Yin Yu, recent Ph.D. from the University of Iowa now at Harvard University; Kazim K Moncal, graduate student in engineering science and mechanics and member of the Huck Institute, Penn State; Weijie Peng, visiting scholar in engineering science and mechanics, Penn State; Iris Rivero, associate professor of industrial manufacturing and systems engineering and Jianqiang Li, former student, Iowa State University; and James A. Martin, associate professor of orthopaedics and rehabilitation, the University of Iowa. The National Science Foundation, Grow Iowa Value Funds and the China Scholarship Fund supported this work.

Media Contact

A'ndrea Elyse Messer


A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>