Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2D nitrogenated crystals new potential rival for graphene

09.03.2015

Researchers in South Korea have, for the first time, developed a simple technique to produce a two-dimensional nitrogen-containing crystal that has the capacity to be a potential rival to graphene and silicon as semi-conductor materials.

Graphene is a two-dimensional (2D) one-atom-thick sheet of carbon crystals that has many extraordinary properties in terms of its strength, electrical and thermal conductivity, and optical transparency. Graphene shows promise for use in nanoelectronics, hydrogen storage, batteries and sensors.


Atomic-resolution scanning tunneling microscope (STM) images: (a) STM image without structurally superimposed image; (b) STM image with structurally superimposed image (gray: carbon atom, cyan: nitrogen atom).

Copyright : Ulsan National Institute of Science and Technology

Research on graphene in recent years has raised huge interest among scientists about the potential of synthesising other 2D crystals by introducing elements other than carbon into graphene’s carbon lattice. The motivation behind this is the possibility this might provide to develop materials that can be used as an active switching element in electronics.

The atomic size and structure of nitrogen make it an excellent choice for this purpose because it can fit naturally into a strong network of carbon atoms by creating bonds (sp2) in which electrons are shared by the whole network.

Whereas there are many difficulties in the synthesis of graphene, the team of researchers at Ulsan National Institute of Science and Technology (UNIST) and Pohang University of Science and Technology in South Korea synthesized nitrogenated 2D crystals using a simple chemical reaction in liquid phase without using a template. Conventional methods for the formation of 2D crystals require the use of such a template.

The researchers verified the structure of the nitrogenated crystal by atomic-resolution scanning tunnelling microscopy imaging and confirmed its semiconducting nature by testing it with a field effect transistor. The unique geometric and electronic structure of the nitrogenated crystals make it potentially suitable for use in electronics, sensors and catalysis.

Its successful synthesis using a simple technique may open a new chapter in the cost-effective generation of other 2D materials.

“We believe that the results presented in this work provide not only compelling advance in materials science and technology, but also exciting potential for a wide range of practical applications from wet-chemistry to device applications,” says Professor Jong-Beom Baek, professor of the School of Energy and Chemical Engineering at UNIST. “Thus, the material would attract immediate attention from a broad range of disciplines, due to its potential scientific and technological impacts,” he says.

The findings of the study appeared in Nature Communications on March 6, 2015.
(Nat. Commun. 6:6486 doi: 10.1038/ncomms7486 (2015))


For further information contact:

Jong-Beom Baek, PhD
Professor/Director, School of Energy and Chemical Engineering/
Center for Dimension-Controllable Covalent Organic Framework
Ulsan National Institute of Science and Technology
100 Banyeon, Ulsan 689-798, South Korea
Email: jbbaek@unist.ac.kr
Web: http://jbbaek.unist.ac.kr

About the Center for Dimension-Controllable Covalent Organic Framework

The Centre was launched on 1st December 2014. It is one of the prestigious Creative Research Initiative (CRI) programs which will be supported by the National Research Foundation of Korea for next 9 years. The centre will focus on the development of a new class of two-dimensional (2D) structures. Its research objectives are the design and synthesis of low-dimensional carbon-based materials beyond graphene with potential applications in energy conversion and storage, catalysis, electronic device, gas storage and nanomedicine/nanobiotechnology.


Associated links
More information about Prof. Jong-Beom Baek, the School of Energy and Chemical Engineering and the Center for Dimension-Controllable Covalent Organic Framework

Journal information

Nature Communications

UNIST-PR | ResearchSEA

Further reports about: Framework Nature Communications UNIST Ulsan crystals graphene materials structure synthesis

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>