Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2D nitrogenated crystals new potential rival for graphene


Researchers in South Korea have, for the first time, developed a simple technique to produce a two-dimensional nitrogen-containing crystal that has the capacity to be a potential rival to graphene and silicon as semi-conductor materials.

Graphene is a two-dimensional (2D) one-atom-thick sheet of carbon crystals that has many extraordinary properties in terms of its strength, electrical and thermal conductivity, and optical transparency. Graphene shows promise for use in nanoelectronics, hydrogen storage, batteries and sensors.

Atomic-resolution scanning tunneling microscope (STM) images: (a) STM image without structurally superimposed image; (b) STM image with structurally superimposed image (gray: carbon atom, cyan: nitrogen atom).

Copyright : Ulsan National Institute of Science and Technology

Research on graphene in recent years has raised huge interest among scientists about the potential of synthesising other 2D crystals by introducing elements other than carbon into graphene’s carbon lattice. The motivation behind this is the possibility this might provide to develop materials that can be used as an active switching element in electronics.

The atomic size and structure of nitrogen make it an excellent choice for this purpose because it can fit naturally into a strong network of carbon atoms by creating bonds (sp2) in which electrons are shared by the whole network.

Whereas there are many difficulties in the synthesis of graphene, the team of researchers at Ulsan National Institute of Science and Technology (UNIST) and Pohang University of Science and Technology in South Korea synthesized nitrogenated 2D crystals using a simple chemical reaction in liquid phase without using a template. Conventional methods for the formation of 2D crystals require the use of such a template.

The researchers verified the structure of the nitrogenated crystal by atomic-resolution scanning tunnelling microscopy imaging and confirmed its semiconducting nature by testing it with a field effect transistor. The unique geometric and electronic structure of the nitrogenated crystals make it potentially suitable for use in electronics, sensors and catalysis.

Its successful synthesis using a simple technique may open a new chapter in the cost-effective generation of other 2D materials.

“We believe that the results presented in this work provide not only compelling advance in materials science and technology, but also exciting potential for a wide range of practical applications from wet-chemistry to device applications,” says Professor Jong-Beom Baek, professor of the School of Energy and Chemical Engineering at UNIST. “Thus, the material would attract immediate attention from a broad range of disciplines, due to its potential scientific and technological impacts,” he says.

The findings of the study appeared in Nature Communications on March 6, 2015.
(Nat. Commun. 6:6486 doi: 10.1038/ncomms7486 (2015))

For further information contact:

Jong-Beom Baek, PhD
Professor/Director, School of Energy and Chemical Engineering/
Center for Dimension-Controllable Covalent Organic Framework
Ulsan National Institute of Science and Technology
100 Banyeon, Ulsan 689-798, South Korea

About the Center for Dimension-Controllable Covalent Organic Framework

The Centre was launched on 1st December 2014. It is one of the prestigious Creative Research Initiative (CRI) programs which will be supported by the National Research Foundation of Korea for next 9 years. The centre will focus on the development of a new class of two-dimensional (2D) structures. Its research objectives are the design and synthesis of low-dimensional carbon-based materials beyond graphene with potential applications in energy conversion and storage, catalysis, electronic device, gas storage and nanomedicine/nanobiotechnology.

Associated links
More information about Prof. Jong-Beom Baek, the School of Energy and Chemical Engineering and the Center for Dimension-Controllable Covalent Organic Framework

Journal information

Nature Communications

UNIST-PR | ResearchSEA

Further reports about: Framework Nature Communications UNIST Ulsan crystals graphene materials structure synthesis

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>