Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That's the way the droplets adhere

20.02.2013
Understanding exactly how droplets and bubbles stick to surfaces — everything from dew on blades of grass to the water droplets that form on condensing coils after steam drives a turbine in a power plant — is a "100-year-old problem" that has eluded experimental answers, says MIT's Kripa Varanasi. Furthermore, it's a question with implications for everything from how to improve power-plant efficiency to how to reduce fogging on windshields.

Now this longstanding problem has finally been licked, Varanasi says, in research he conducted with graduate student Adam Paxson that is described this week in the journal Nature Communications. They achieved the feat using a modified version of a scanning electron microscope in which the dynamic behavior of droplets on surfaces at any angle could be observed in action at high resolution.

Previous attempts to study droplet adhesion have been static — using drops of a polymer that are allowed to harden and then sliced in cross-section — or have been done only at very low resolution. The ability to observe the process in close-up detail and in full motion is an unprecedented feat, says Varanasi, the Doherty Associate Professor of Ocean Utilization.

Normally, scanning electron microscopes observe materials on a fixed horizontal stage and under a strong vacuum, which causes water to evaporate instantly. The MIT team was able to adapt the equipment to operate with a weaker vacuum, and with the ability to change the surface angle and to push and pull droplets across the surface with a tiny wire.

Paxson and Varanasi found that a key factor in determining whether a droplet sticks to the surface is the angle of the droplet's leading and trailing edges relative to the surface. Nobody had been able to observe these angles dynamically at microscale before, while theorists had not predicted their importance.

The MIT researchers also found that on rough surfaces, surface texture is crucial to adhesion. Surprisingly, they found that too much roughness can make droplets stick more — contrary to the widely held belief that greater roughness always improves a surface's ability to shed water. It all depends on the details of the texture, they found.

For many applications, it's important that droplets fall away from a condensing surface as quickly as possible; for others, it's best to "pin" them in place as long as possible so they can grow and spread. The new analysis, which led to a mathematical system for precisely predicting droplet behavior, can be used to optimize a surface in either way. (Bubbles, such as those on the bottom of a pan of boiling water, behave in essentially the same way).

"People have only been able to make sketches" of how droplet adhesion works, Paxson says. With the new high-resolution imagery, it is now clear that as a droplet peels away from a rough surface, the round droplet forms a series of tiny "necks" adhering to each of the high points on the surface; these necks (which the researchers call "capillary bridges") then gradually stretch, thin and break. The more high spots on the surface, the more of these tiny necks form. "That's where all the adhesion occurs," Paxson says.

The MIT authors say the phenomenon is "self-similar," like fractal structure: Each neck or capillary bridge can consist of several capillary bridges at finer length scales; it is the cumulative effect that dictates the overall adhesion. This self-similarity is exploited by some biological structures for lowering adhesion.

There had been two leading theories on how to calculate the adhesion of droplets: One held that the areas of contact and energy levels of the molecules were key; the other, that the length of the edge of a drop on a surface was critical. The evidence produced by this research strongly supports the second theory. "I think we have now closed a decades-old debate on this one," Varanasi says.

In general, Paxson says, "complicated shapes tend to be more sticky," because of their greater edge-length.

Droplets and bubbles are ubiquitous in many engineering applications. This work could be applied to engineering industrial surfaces with controlled adhesion in applications ranging from large desalination and power plants to consumer products such as fabrics, packaging and medical devices. While some applications, such as condensers, strive to shed droplets quickly from a surface, others — such as ink droplets sprayed onto paper in an inkjet printer — require the reverse. The new methodology might help in improving both functions, the researchers say.

Paxson and Varanasi's formulas can also explain variability among natural textured surfaces — such as lotus leaves, which shed water efficiently, and rose petals, which do not. Finally, the new research could advance our understanding of certain biological processes — such as how water spiders, which make an air bubble to house themselves under the surface of a body of water, control the surface tension to penetrate the bubble.

The work was supported by the National Science Foundation and the DuPont-MIT Alliance.

Written by David Chandler, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>