Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Amplified' nanotubes may power the future

15.07.2011
Rice University lab bulks up raw materials for highly efficient electric grid

Rice University scientists have achieved a pivotal breakthrough in the development of a cable that will make an efficient electric grid of the future possible.

Armchair quantum wire (AQW) will be a weave of metallic nanotubes that can carry electricity with negligible loss over long distances. It will be an ideal replacement for the nation's copper-based grid, which leaks electricity at an estimated 5 percent per 100 miles of transmission, said Rice chemist Andrew R. Barron, author of a paper about the latest step forward published online by the American Chemical Society journal Nano Letters.

A prime technical hurdle in the development of this "miracle cable," Barron said, is the manufacture of massive amounts of metallic single-walled carbon nanotubes, dubbed armchairs for their unique shape. Armchairs are best for carrying current, but can't yet be made alone. They grow in batches with other kinds of nanotubes and have to be separated out, which is a difficult process given that a human hair is 50,000 times larger than a single nanotube.

Barron's lab demonstrated a way to take small batches of individual nanotubes and make them dramatically longer. Ideally, long armchair nanotubes could be cut, re-seeded with catalyst and re-grown indefinitely.

The paper was written by graduate student and first author Alvin Orbaek, undergraduate student Andrew Owens and Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry and a professor of materials science.

Amplification of nanotubes was seen as a key step toward the practical manufacture of AQW by the late Rice professor, nanotechnology pioneer and Nobel laureate Richard Smalley, who worked closely with Barron and Rice chemist James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, to lay out a path for its development.

Barron charged Orbaek with the task of following through when he joined the lab five years ago. "When I first heard about Rice University, it was because of Rick Smalley and carbon nanotubes," said Orbaek, a native of Ireland. "He had a large global presence with regard to nanotechnology, and that reached me.

"So I was delighted to come here and find I'd be working on nanotube growth that was related to Smalley's work."

Orbaek said he hasn't strayed far from Barron's original direction, which involved chemically attaching an iron/cobalt catalyst to the ends of nanotubes and then fine-tuning the temperature and environment in which amplification could occur.

"My group, with Smalley and Tour's group, demonstrated you could do this -- but in the first demonstration, we got only one tube to grow out of hundreds or thousands," Barron said. Subsequent experiments raised the yield, but tube growth was minimal. In other attempts, the catalyst would literally eat -- or "etch" -- the nanotubes, he said.

Refining the process has taken years, but the payoff is clear because up to 90 percent of the nanotubes in a batch can now be amplified to significant lengths, Barron said. The latest experiments focused on single-walled carbon nanotubes of various chiralities, but the researchers feel the results would be as great, and probably even better, with a batch of pristine armchairs.

The key was finding the right balance of temperatures, pressures, reaction times and catalyst ratios to promote growth and retard etching, Barron said. While initial growth took place at 1,000 degrees Celsius, the researchers found the amplification step required lowering the temperature by 200 degrees, in addition to adjusting the chemistry to maximize the yield.

"What we're getting to is that sweet spot where most of the nanotubes grow and none of them etch," Barron said.

Wade Adams, director of Rice's Richard E. Smalley Institute for Nanoscale Science and Technology and principal investigator on the AQW project, compared the technique to making sourdough bread. "You make a little batch of pure metallics and then amplify that tremendously to make a large amount. This is an important increment in developing the science to make AQW.

Adams noted eight Rice professors and dozens of their students are working on aspects of AQW. "We know how to spin nanotubes into fibers, and their properties are improving rapidly too," he said. "All this now has to come together in a grand program to turn quantum wires into a product that will carry vast amounts of electricity around the world."

Barron and his team are continuing to fine-tune their process and hope that by summer's end they can begin amplifying armchair nanotubes with the goal of making large quantities of pure metallics. "We're always learning more about the mechanisms by which nanotubes grow," said Orbaek, who sees the end game as the development of a single furnace to grow nanotubes from scratch, cap them with new catalyst, amplify them and put out a steady stream of fiber for cables.

"What we've done is a baby step," he said. "But it verifies that, in the big picture, armchair quantum wire is technically feasible."

Orbaek said he is thrilled to play a role in achieving amplification, which Smalley recognized as necessary to his dream of an efficient energy grid that would catalyze solutions to many of the world's problems.

"I'd love to meet him now to say, 'Hey, man, you were right,'" he said.

The Robert A. Welch Foundation and the Air Force Office of Scientific Research funded the research. The Air Force Research Laboratory is primary funding agency for the AQW project.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl201315j

Download high-resolution images here:

http://www.media.rice.edu/images/media/NEWSRELS/0712_AQW_montage1.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0712_AQW.jpg
CAPTIONS
(nanotubes)
These images show a single carbon nanotube before and after amplification, a process developed at Rice University seen as key in the development of armchair quantum wire. Such a wire would transmit electricity over great distances with virtually no loss.

(Credit: Barron Lab/Rice University)

(researchers)

Rice University graduate student Alvin Orbaek, left, and Professor Andrew Barron developed a method to extend the length of carbon nanotubes.

(Credit: Jeff Fitlow/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>