Wing bling: For female butterflies, flashier is better

With only limited exposure, female butterflies can learn to prefer males with four spots on their wings, even though males of their species generally sport two spots. Credit: courtesy of Yale University<br>

The answer is that while females are predisposed to prefer a specific pattern, they learn to like flashier ones more, according to a new Yale University study.

The study published online the week of June 11 in the Proceedings of the National Academy of Sciences gives a partial explanation of an evolutionary mystery.

Biologists used to think that preference for certain traits such as wing spots are hardwired into insects. But that left scientists wondering how butterflies managed to evolve such great diversity in their wing coloration.

The Yale team studied the butterfly species Bicyclus anynana, which in the wild has two spots on its wings. The researchers found that female butterflies of the species learn to prefer males with four spots on their wings over those with two spots.

“What surprised us was that females learn this preference after being in the presence of males for just a very short period of time,” said Erica L. Westerman of Yale's Department of Evolutionary Biology and Ecology (EEB) and lead author “The male did not have to court them or engage in flashy behavior.”

While other studies have found that invertebrates can learn new preferences, the Yale researchers were surprised to find that an insect species like the butterfly actually can learn to favor some wing patterns more than others.

When exposed to butterflies with four brilliant ultraviolet-reflecting spots for only three hours, females no longer show preference for the type of males found in the wild. But females initially exposed to drabber males with one or zero spots did not change their original preferences.

“There is a bias in what females learn, and they learn extra ornamentation is better,” said Antónia Monteiro, EEB professor and senior author of the paper.

The findings that social environment can change mating preference of female butterflies helps explain how novel wing patterns evolve, say the researchers Now Westerman wants to discover how female butterflies learn to make these choices.

“What we have found is a previously unexplored mechanism for biasing the evolution of morphological diversity,” Westerman said. “We are now investigating what other cues are being evaluated during the learning period and what prevents females from mating with members of other species.”

Study was funded by the National Science Foundation and Yale.

Yale's Andrea Hodgins-Davis and April Dinwiddie were co-authors of the pape

Media Contact

Bill Hathaway EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors