From Tropics to Poles: Study Reveals Diversity of Life in Soils

That conclusion is found in research results published today in the journal Proceedings of the National Academy of Sciences.

Scientists have generally accepted that a wider range of species can be found above ground at the equator than at the Earth's poles.

But this study proves for the first time that the same rules don't apply to the nematodes, mites and springtails living underground.

The team of National Science Foundation- (NSF) funded ecologists includes Tiehang Wu and Jim Garey at the University of South Florida, Diana Wall at Colorado State University, Ed Ayres now at Neon Inc. in Colorado, and Richard Bardgett at the University of Lancaster in the United Kingdom.

“Scientist E.O. Wilson noted that the key to understanding Earth's biodiversity lies in exploration of its smallest life forms,” said Matt Kane, program director in NSF's Division of Environmental Biology, which funded the research.

“Important affirmation of this idea is provided in this global study of animals, in which the significance of belowground biodiversity is revealed.”

This is the first comprehensive molecular analysis–at nearly a species resolution–of the global distribution of soil animals across a broad range of ecosystems from the tropics to the poles.

Soil samples were taken from 11 sites around the world, including tropical forest in Costa Rica, arid grassland in Kenya, warm temperate forest in New Zealand, shrub steppe of Argentina and tundra and boreal forest of Alaska and Sweden.

Through DNA testing, researchers found that each location had a diversity of soil animals, but that each ecosystem is unique with its own soil animals–illustrating an “amazing diversity of species” that had never been discovered before, said Garey.

“On average, 96 percent of our identified soil animals were found at only a single location, suggesting that most soil animals have restricted distributions, or in other words, they are endemic,” said Wall.

“This challenges the long-held view that these smaller animals are widely distributed. However, unlike most above-ground organisms, there was no indication that latitude made a difference in soil animal diversity.”

“Mites and roundworms dominate soil ecology and contribute to the breakdown and cycling of nutrients in the soil,” Garey said. “These animals are essential to the proper functioning of the soil ecosystem in natural and farmlands.”

The researchers also examined how the global distribution of soil animals relates to factors such as climate, soil nutrient levels and aboveground biodiversity.

Results showed that sites with greater aboveground biodiversity appeared to have lower diversity beneath in soils.

The main factors explaining this low soil animal diversity at sites with high aboveground diversity were high levels of soil inorganic nitrogen availability and lower pH compared with other sites.

Some sites with high animal biodiversity, like the Kenyan grassland site, are considered more at risk due to land use and population increase.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Emily Wilmsen, Colorado State University (970) 491-2336 emily.wilmsen@colostate.edu

Michele Dye, University of South Florida (813) 974-6469 mdye@usf.edu

Related Websites
Life Underground Critical to Earth's Ecosystems: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=115253

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Media Contact

Cheryl Dybas EurekAlert!

More Information:

http://www.nsf.gov

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors