Smallest cavity for light realized by graphene plasmons

Artistic illustration of the light compressed below the silver nanocubes randomly placed over the graphene-based heterostructure. Image credit: Matteo Ceccanti / ICFO

Miniaturization has pushed technology to a new era of optical circuitry. But, in parallel, it has also triggered new challenges and obstacles to overcome, for example, on how to deal with controlling and guiding light at the nanometer scale.

New techniques have been on the rise searching for ways to confine light into extremely tiny spaces, millions of times smaller than current ones. Researchers had earlier on found that metals can compress light below the wavelength-scale (diffraction limit).

In that aspect, Graphene – a material composed from a single layer of carbon atoms, with exceptional optical and electrical properties, is capable of guiding light in the form of “plasmons”, which are oscillations of electrons that are strongly interacting with light.

These graphene plasmons have a natural ability to confine light to very small spaces. However, until now it was only possible to confine these plasmons in one direction, while the actual ability of light to interact with small particles, like atoms and molecules, resides in the volume that it can be compressed into. This type of confinement, in all three dimensions, is commonly regarded as an optical cavity.

In a recent study published in Science, ICFO researchers Itai Epstein, David Alcaraz, Varum-Varma Pusapati, Avinash Kumar, Tymofiy Khodkow, led by ICREA Prof. at ICFO Frank Koppens, in collaboration with researchers from MIT, Duke University, Université Paris-Saclay, and Universidad do Minho, have succeeded to build a new type of cavity for graphene plasmons, by integrating metallic cubes of nanometer sizes over a graphene sheet.

Their approach enabled to realize the smallest optical cavity ever built for infrared light, which is based on these plasmons.

In their experiment they used silver nanocubes of 50 nanometers in size, which were sprinkled randomly on top of the graphene sheet, with no specific pattern or orientation. This allowed each nanocube, together with graphene, to act as a single cavity.

Then they sent infrared light through the device and observed how the plasmons propagated into the space between the metal nanocube and the graphene, being compressed only to that very small volume.

As Itai Epstein, first author of the study, comments, “the main obstacle that we encountered in this experiment resided in the fact that the wavelength of light in the infrared range is very large and the cubes are very small, about 200 times smaller, so it is extremely difficult to make them interact with each other.”

In order to overcome this, they used a special phenomenon – when the graphene plasmons interacted with the nanocubes, they were able to generate a special resonance, called a magnetic resonance. As Epstein clarifies, “A unique property of the magnetic resonance is that it can act as a type of antenna that bridges the difference between the small dimensions of the nanocube and the large scale of the light.”

Thus, the generated resonance maintained the plasmons moving between the cube and graphene in a very small volume, which is ten billion times smaller than the volume of regular infrared light, something never achieved before in optical confinement. Even more so, they were able to see that the single graphene-cube cavity, when interacting with the light, acted as a new type of nano-antenna that is able to scatter the infrared light very efficiently.

The results of the study are extremely promising for the field of molecular and biological sensing, important for medicine, biotechnology, food inspection or even security, since this approach is capable of intensifying the optical field considerably and thus detect molecular materials, which usually respond to infrared light.

As Prof. Koppens states “such achievement is of great importance because it allows us to tune the volume of the plasmon mode to drive their interaction with small particles, like molecules or atoms, and be able to detect and study them.

We know that the infrared and Terahertz ranges of the optical spectrum provide valuable information about vibrational resonances of molecules, opening the possibility to interact and detect molecular materials as well as use this as a promising sensing technology”.

REFERENCE

Far-field Excitation of Single Graphene Plasmon Cavities with Ultra-compressed Mode-volumes, Itai Epstein, David Alcaraz, Zhiqin Huang, Varun-Varma Pusapati, Jean-Paul Hugonin, Avinash Kumar, Xander M. Deputy, Tymofiy Khodkov, Tatiana G. Rappoport, Jin-Yong Hong, Nuno M. R. Peres, Jing Kong, David R. Smith, and Frank H. L. Koppens, Science (2020). https://science.sciencemag.org/cgi/doi/10.1126/science.abb1570

ABOUT ICFO

ICFO was founded by the Government of Catalonia and the Universitat Politècnica de Catalunya (UPC), both of which are members of its board of trustees along with the Cellex and Mir-Puig Foundations, philanthropic entities that have played a critical role in the advancement of the institute. Located in the Mediterranean Technology Park in the metropolitan area of Barcelona, the institute currently hosts 400 people, organized in 25 research groups in 60 state-of-the-art research laboratories. Research lines encompass diverse areas in which photonics plays a decisive role, with an emphasis on basic and applied themes relevant to medicine and biology, advanced imaging techniques, information technologies, a range of environmental sensors, tunable and ultra-fast lasers, quantum science, photovoltaics and the properties and applications of nano-materials such as graphene, among others. In addition to two state awarded Severo Ochoa accreditations of excellence, ICFOnians have secured 15 ICREA Professorships and 37 European Research Council grants. ICFO is proactive in fostering entrepreneurial activities, spin-off creation, and creating collaborations and links between industry and ICFO researchers. To date, ICFO has helped create 7 start-up companies.

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.eu
0034-935-542-246

http://www.icfo.es

Media Contact

Alina Hirschmann EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors