Signal processing: Look-up tables to shoulder the processing load

Advanced mathematical algorithms are essential for processing electronic signals within computers and embedded processors. Scientists and engineers are constantly refining and redesigning their algorithms to obtain higher throughput of information on ever smaller devices that consume less power.

Now, Pramod Kumar Meher of the A*STAR Institute for Infocomm Research in Singapore and co-workers at Central South University in Changsha, China, have developed an efficient new method to implement an important step in signal processing, called the discrete cosine transform (DCT). Their method could lead to devices that occupy smaller areas, provide higher throughput of information, and consume less power than existing devices.

The DCT is commonly used for the compression of digital video and audio such as MPEG files. Similar to the better-known Fourier transform, the DCT involves expressing a series of data points as a sum of their product with cosine functions.

Several algorithms and software architectures already exist for computing so-called ‘power-of-two-length DCTs’. But, those DCTs are not suitable for all applications. The prime-length DCT is an alternative to the power-of-two-length DCT that has the potential to be more efficient for implementation in hardware, Meher notes.

Meher and his co-workers have focused on computing the DCT of different lengths of practical interest using specialized digital circuits that occupy less area on a silicon chip and use less power, but run at adequate speed. They not only derived a more efficient algorithm for DCT, but also derived new architecture—based on the ‘distributed arithmetic’ approach—for implementing the algorithm in integrated circuit chips.

Meher and co-workers made use of a theorem that inter-relates the transforms with cyclic convolution of two finite duration sequences. By using look-up tables, this convolution, and thereafter the prime-length DCT, could be performed quickly and accurately.

The team also described a new, efficient algorithm for decomposing the DCT—in mathematics, this means rewriting the problem in terms of a combination of simpler quantities. In addition to reducing the required size of read-only memory (ROM), the researchers found that overall their algorithm significantly reduced the computation time.

“We found that the proposed design involves significantly less area and it yields higher throughput with less power consumption than the corresponding existing designs,” says Meher. “The structure we propose is highly regular, modular and therefore suitable for Very Large Scale Integration realization.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Xie, J., Meher, P. K. & He, J. Hardware-efficient realization of prime-length DCT based on distributed arithmetic. IEEE Transactions on Computers preprint, 6 March 2012 (doi: 10.1109/TC.2012.64).

Media Contact

A*STAR Research Research asia research news

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Speaking without vocal cords, thanks to a new AI-assisted wearable device

The adhesive neck patch is the latest advance by UCLA bioengineers in speech technology for people with disabilities. People with voice disorders, including those with pathological vocal cord conditions or…

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

Partners & Sponsors