Photoacoustics technique detects small number of cancer cells

But one of the major limitations of these technologies is their inability to detect the presence of only a few cancer cells.

Now, a research collaboration between the University of Missouri-Columbia and Mexico's Universidad de Guanajuato shows that pulsed photoacoustic techniques, which combine the high optical contrast of optical tomography with the high resolution of ultrasound, can do just that, in vitro. Most cancer cells are naturally elusive, so they used a photoacoustic enhancer to detect them.

New developments are necessary, the researchers say, to be able to properly use photoacoustic techniques to recognize different cancer cell types inside the human body or in blood or tissue samples.

Article: “An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells” is published in AIP Advances.

Authors: Rafael Pérez Solano (1), Francisco I. Ramirez-Perez (1), Jorge A. Castorena-Gonzalez (2), Edgar Alvarado Anell (3), Gerardo Gutiérrez-Juárez (1), and Luis Polo-Parada (4, 5).

(1) División de Ciencias e Ingenierías-Campus León, Universidad de Guanajuato, México
(2) Department of Bioengineering, University of Missouri-Columbia
(3) Facultad de Ingeniería en Computación y Electrónica, Universidad De La Salle, México
(4) Department of Medical Pharmacology and Physiology, University of Missouri-Columbia

(5) Dalton Cardiovascular Research Center, University of Missouri-Columbia

Media Contact

Charles E. Blue EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors