PET Scans May Allow Early Prediction of Response to Targeted Therapy of Thyroid Cancer

Currently being tested in clinical trials, vandetanib inhibits the function of the RET (rearranged-during-transfection protein) proto-oncogene and other protein kinases involved in the development and progression of cancer.

“For the most part, clinical trials have been measuring the effectiveness of vandetanib by changes in tumor size. Based on the activating effects of mutated RET and other protein kinases on numerous intracellular metabolic pathways, we hypothesized that PET imaging could play a role in the early evaluation of response to vandetanib,” said Martin A. Walter, MD, lead author of the study “Metabolic Imaging Allows Early Prediction of Response to Vandetanib.”

The study examined the usefulness of metabolic imaging to determine response to vandetanib in three ways. First, medullary thyroid cancer cells were used to create an in vitro model. After cultivation, the cells were treated with vandetanib, and changes in the metabolic profile of the cells were successfully monitored by transcriptional profiling and by radiotracer uptake studies.

Using the same untreated cells, the researchers then created an in vivo model by injecting mice with the cancerous cells and treating them with vandetanib. Small animal PET/computed tomography (CT) imaging was performed and was found to reproduce the in vitro findings of metabolic activity after three days.

Finally, a 43-year old patient with biopsy-proven metastasized medullary thyroid cancer was treated with vandetanib. PET scans taken at 12 and 24 weeks after treatment were able to detect metabolic response to vandetanib, consistent with the in vitro and in vivo samples.

“With the increasing number of available treatment options, careful patient selection is necessary to ensure targeted therapy is administered to those most likely to gain clinical benefit,” said Walter. “The identification of markers of treatment efficacy is a key factor for the success of these novel treatment approaches.”

“Furthermore,” he continued, “relating in-vivo PET imaging metabolic data with transcriptional profiling data using cluster analysis is an innovative concept that allows much potential in the field of molecular imaging.”

Authors of the scientific article, “Metabolic Imaging Allows Early Prediction of Response to Vandetanib” include: Martin A. Walter, Institute of Nuclear Medicine, University Hospital, Bern, Switzerland, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, Calif.; Matthias R. Benz, Isabel J. Hildebrandt, Rachel E. Lang, Michael E. Phelps and Johannes, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, Calif.; Verena Hartung and Andreas Bockisch, Institute of Nuclear Medicine, University Hospital, Essen, Germany; Robert D. Damoiseaux, Molecular Shared Screening Resources, UCLA, Los Angeles, Calif.; and Wolfgang A. Weber, Department of Nuclear Medicine, University Hospital, Freiburg, Germany, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, Calif.

Please visit the SNM Newsroom to view the PDF of the study. To schedule an interview with the researchers, please contact Susan Martonik at (703) 652-6773 or smartonik@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM—Advancing Molecular Imaging and Therapy
SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today’s medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM’s more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Media Contact

Susan Martonik EurekAlert!

More Information:

http://www.snm.org

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors