Penetrating Insights: NIST Airframe Tests Help Ensure Better Shielding for Flight

Recent tests by researchers at the National Institute of Standards and Technology (NIST) will provide much needed, independent data on how electromagnetic radiation penetrates aircraft, helping to ensure continued air travel safety.

The Federal Aviation Administration (FAA) requires aircraft manufacturers to demonstrate that their aircraft have effective high intensity radiated field (HIRF) protection. The manufacturers conduct tests on their aircraft and provide those results to the FAA as part of the certification process. The tests are designed to show where and to what extent electromagnetic radiation, across a wide spectrum of frequencies, penetrates a given craft’s airframe. This information is important in determining if and where shielding is needed to protect vital electronic instrumentation from malfunction or damage while flying through ground-based radar beams, for example.

This effort was undertaken to assist the FAA with HIRF measurement procedures and data processing methodologies. The FAA has struggled with data sets provided by HIRF testers because they use a wide range of measurement/data processing techniques that are not standardized.

For an independent analysis of the situation, a NIST team recently performed HIRF tests on three representative aircraft to give FAA officials a frame of reference for the procedures and data reduction techniques used for typical low-level airframe HIRF attenuation/shielding tests. Having this information will help the FAA ensure that commercial aircraft are indeed meeting minimum shielding requirements and, ultimately, make the safety of tested aircraft more transparent. “This will get everyone on the same page,” says Chriss Grosvenor, a NIST electronics engineer. “The FAA and aircraft manufacturers now have a lot of unbiased data they can look at, and our method is just another method to obtain that information.”

The three aircraft chosen for the representative tests were a Boeing 737-200 and a Bombardier Global 5000 business jet, both owned by the FAA, and a Beechcraft Premier IA carbon-fiber composite business jet, owned by the Hawker-Beechcraft company. By measuring all three aircraft and comparing the results, NIST was able to provide a guide for the optimization of HIRF testing standards for the EMC aircraft manufacturing community. The tests were conducted over a two-year period using a commercial measurement system that incorporates NIST-developed ultra-wideband antennas, a network analyzer and an optical fiber link to obtain high-resolution measurements from the megahertz to gigahertz range. NIST-developed special software extends the number of frequencies to any desired value using a variable number of bands.

The findings of these tests were published last year* and were presented last week at the IEEE EMC Society Symposium on Electromagnetic Compatibility in Austin, Texas.

Media Contact

James Burrus Newswise Science News

More Information:

http://www.nist.gov

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors