Magnetic field sensors for monitoring heart and brain activity developed

High sensitivity magnetic sensors are important in medical diagnostics for applications such as monitoring heart and brain activities, where mapping distributions of localized extremely weak magnetic fields arising from these organs could provide early warning of life threatening diseases and malfunction.

Mitsuteru Inoue and colleagues at Toyohashi University of Technology (Toyohashi Tech) have developed high sensitivity magnetic sensors using magnonic crystals—artificial magnetic crystal structures capable of controlling the propagation of magnetostatic waves. Magnonic crystals support the propagation of magnetostatic waves through the crystal spin system or suppress the propagation of waves due to the periodicity of the crystal structure.

In this research the Toyohashi Tech researchers fabricated magnonic crystals by the direct formation of one-dimensional arrays of metal strips on yttrium iron garnet (YIG)—a ferromagnetic material widely used in the magneto-electronics industry— which serves as the propagation medium. The metal stripes induce an attenuation band in the frequency spectra of the magnonic crystal and restrict the propagation of waves of specific frequencies.

Even at room temperature, the output signal of the devices—frequency of the attenuation band—is very sensitive to external magnetic fields applied to the YIG crystal, where a one Oersted change in the field causes a 2.6 MHz shift in the attenuation band gap. Importantly, the maximum detection sensitivity of the magnonic crystals is more than 10 times greater that of giant magneto-impedance devices.

Next the researchers are planning to demonstrate the measurement of magnetic fields in three dimensions.

Reference:

Mitsuteru Inoue et.al (2011) :Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature. Applied Physics Letters 98, 132511. DOI: 10.1063/1.3567940

Further information:
Ms. Junko Sugaya and Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042; FAX: (+81)0532-44-6557
E-mail:ryugaku@office.tut.ac.jp
About Toyohashi University of Technology:
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

About the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS):

EIIRIS is Toyohashi Tech’s new flagship research complex launched on 1st October 2010. “The aim of EIIRIS is to produce world-class innovative research,” says President Yoshiyuki Sakaki. “To do this we are bringing together ambitious young researchers from diverse fields to collaborate on pioneering new frontiers in science such as brain/neuro-electronics as well as tackling some of the major issues mankind faces today: issues such as environmental changes and aging societies.”

Media Contact

Adarsh Sandhu Research asia research news

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors