Largest virtual telescope for short wavelengths opened

The Physical Sciences division of the Netherlands Organisation for Scientific Research (NWO) is one of the joint financiers of the Extended Submillimeter Array (eSMA). Louis Vertegaal, director of NWO Physical Sciences, will officially open the facility on Wednesday 12 November.

“The eSMA is an important overture to the Atacama Large Millimeter Array (ALMA) that will come into operation in Chile in 2013”, says Louis Vertegaal, director of the Physical Sciences division of the Netherlands Organisation for Scientific Research (NWO). “The eSMA puts the Netherlands at the head of the field in the development of such submillimetre techniques. With the experience gained during work on the eSMA, Dutch astronomers should have a flying start when they have the opportunity to work with ALMA, eSMA's global 'brother' and twelve times bigger.”

High and dry
The submillimetre wavelength, also known as far-infrared, is light that is invisible to the human eye. It can penetrate dense clouds of interstellar dust and gas, which allows the telescope a clear view of the formation of new stars and planets. The eSMA is a unique device based on interferometry. A system of fibre-optic cables connects three existing telescopes, the 10-metre Caltech Submillimeter Observatory, the 15-metre wide, and partly Dutch, James Clerk Maxwell Telescope (JCMT) and the Smithsonian Millimeter Array that has eight six-metre dishes. Interferometry is a technique that has been used in radio astronomy for years, but its application at shorter wavelengths is considerably more difficult. The Dutch astronomer Remo Tilanus of the JCMT can endorse this: “The three observatories have had to work together closely to get this project off the ground and it’s just fantastic that we are now seeing the first astronomical results.” That the new facility can be found at the 4200-metre high summit of Mauna Kea is no coincidence: water vapour in the atmosphere blocks submillimetre radiation so these wavelengths can only be measured in locations with a low humidity and high altitude.
Scoop for Leiden Observatory
The scoop for the first scientific research results using the eSMA goes to Leiden Observatory. Post-doc Sandrine Bottinelli used the telescope to determine the ratio of atomic to molecular carbon in an extremely distant galaxy. This ratio is used as a standard for determining the degree to which interstellar clouds cool down and switch to star formation; moreover, atomic carbon is important in the formation of organic materials. “The results give us a glimpse of the chemical conditions of the young universe, about 6.5 billion years ago”, says Bottinelli, “and they can tell us whether the conditions all that time ago were suitable, as they are now, for the synthesis of prebiotic molecules.”

For photographs of the telescope and international press release: http://outreach.jach.hawaii.edu/pressroom/2008_eSMA/

Media Contact

Kim van den Wijngaard alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors