KESTCELLS: New EU research consortium aims to develop a network for researchers in photovoltaics

The University of Luxembourg team lead by Professor Susanne Siebentritt, head of the Laboratory for Photovoltaics, Physics Research Unit, has joined the project and will examine the basic semiconductor physics of new materials used in solar cells.

The overall objective of this project, which runs from September 2012 to August 2016, is the creation of a Marie Curie Initial Training Network for the structured interdisciplinary training of researchers in advanced thin film PV technologies. A lack of professionals with these competences has already been identified as one of the main risks for the future development and consolidation of a competitive European PV sector.

“We are looking at developing PV technologies based on kesterite material, a mineral heavy in copper and zinc, to meet the cost, efficiency and sustainability requirements for mass production of solar cells needed for solar energy”, explains Prof. Siebentritt. “With this training network we can keep Europe on the path to being a leader in solar energy”, she continues.

These new materials have a high potential for low cost thin film PV technologies, as kesterites are formed by abundant and cheap elements. The project proposes the development of PV technologies based on kesterite, and processes compatible with the efficiency requirements needed to become a reliable and future alternative to conventional non-renewable energy sources.

This collective of high level researchers will ensure the further strategic development of PV technologies in Europe, as described by the Technology Roadmap for PV Energy of the European Commission. Twelve doctoral students and two postdocs will be trained for the duration of the project in complementary aspects related to fundamental materials science, advanced growth techniques in thin film technologies, techniques for advanced characterisation and process monitoring, modelling and design of devices, as well as aspects related to the innovation and industrial implementation of production lines and market analysis.

The 3rd European Kesterite Workshop, Luxembourg 22 and 23 November, 2012

The University of Luxembourg is pleased to be bringing together experts from all over Europe who work on kesterite solar cells. These thin film solar cells contain only abundant and non-toxic elements and have the potential to become the next generation of solar cells.

Professors and researchers will discuss the growth of kesterite films and crystals, electronic and structural properties of kesterite materials and solar cell structure and characterisation.

Notes for the editor

This project is part of the FP7-PEOPLE programme of the EU Commission. The consortium consists of 11 groups with strong and well recognised experience in these fields. This includes IREC, Catalonia Institute for Energy Research, Spain as the coordinator group; Helmholtz Zentrum Berlin, Germany; EMPA, Swiss Federal Laboratories Materials Science and Technology, Switzerland; six Universities; University of Luxembourg, Luxembourg; Northumbria University, United Kingdom; Aix-Marseille University, France; Free University Berlin, Germany; Autonomous University of Madrid, Spain; University of Uppsala-Angstrom Solar Center, Sweden; and two companies NEXCIS, Photovoltaics, France and ASNT, Abengoa Solar New Technologies, Solar Energy, Spain.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors