Greenland ice cap melting faster than ever

This mass loss is equally distributed between increased iceberg production, driven by acceleration of Greenland's fast-flowing outlet glaciers, and increased meltwater production at the ice sheet surface. Recent warm summers further accelerated the mass loss to 273 Gt per year (1 Gt is the mass of 1 cubic kilometre of water), in the period 2006-2008, which represents 0.75 mm of global sea level rise per year.

Professor Jonathan Bamber from the University of Bristol and an author on the paper said: “It is clear from these results that mass loss from Greenland has been accelerating since the late 1990s and the underlying causes suggest this trend is likely to continue in the near future. We have produced agreement between two totally independent estimates, giving us a lot of confidence in the numbers and our inferences about the processes”.

The Greenland ice sheet contains enough water to cause a global sea level rise of seven metres. Since 2000, the ice sheet has lost about 1500 Gt in total, representing on average a global sea level rise of about half a millimetre per year, or 5 mm since 2000.

At the same time that surface melting started to increase around 1996, snowfall on the ice sheet also increased at approximately the same rate, masking surface mass losses for nearly a decade. Moreover, a significant part of the additional meltwater refroze in the cold snowpack that covers the ice sheet. Without these moderating effects, post-1996 Greenland mass loss would have been double the amount of mass loss observed now.

Media Contact

Cherry Lewis EurekAlert!

More Information:

http://www.bristol.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors