Global Warming Trends Contribute to the Spread of West Nile Virus to New Regions in Europe

Global warming trends have a significant influence on the spread of West Nile Virus to new regions in Europe and neighboring countries, where the disease wasn’t present before, according to a new study by the University of Haifa.

The study was commissioned by the European Centre for Disease Prevention and Control (ECDC) in Stockholm, which belongs to the European Union. The study found that rising temperatures have a more considerable contribution than humidity, to the spread of the disease, while the effect of rain was inconclusive.

“These results are an additional testament that global warming contributes to the outbreak of mosquito-borne and other temperature-sensitive vector-borne diseases. The indications to this are piling up in different parts around the globe”, says Dr. Shlomit Paz, who led this research. These findings were recently published in the online scientific journal, “Plos One”.

West Nile Virus is spread by mosquitoes that repeatedly bite infected birds. The potential threat the infection poses to man is the possibility of causing irreversible brain damage or even death through encephalitis or meningitis. The elderly and people with weak immune systems are most susceptible.

The research, conducted by a team from the University of Haifa led by Dr. Shlomit Paz, also included Dr. Dan Malkinson and Gil Tzioni from the Department of Geography and Environmental Studies, along with Prof. Manfred Green, the head of the School of Public Health, and in collaboration with Prof. Jan Semenza from the ECDC. The Israeli research team was chosen by the EU’s ECDC, after winning an international tender.

The current study examined the link between daily temperature, humidity and precipitation data and West Nile incidence in Europe and neighboring countries. “We used statistical tools and found that as a result of heat waves, a dramatic increase in the number of cases resulted from increased activity of the virus and a growth of the mosquito population”, claims Paz. According to her, these results were seen in various countries.

Paz says these results have a significant importance considering the rising temperatures seen in Europe in recent years. She is now conducting a continuing study on the subject for the ECDC and the French research center, CIRAD. “In our new research our aim is to look for additional potential influences on the spread of the disease, such as the location of mosquito populations or various human aspects”, she says.

Paz hopes their findings will make it possible to develop a model for better predicting the future spread of the virus in Europe, “Such a model will allow the ECDC to guide the different European countries on how to better prepare in advance for West Nile outbreaks and perhaps will even allow restraint of such outbreaks in the future”.

For more information, contact Polina Petruhin at +972-4-8288722, +972-54-3933092 or email to ppetruh1@univ.haifa.ac.il .

Media Contact

Polina Petruhin University of Haifa

More Information:

http://www.haifa.ac.il .

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors