The genome's 3-D structure shapes how genes are expressed

Roughly 3 metres of DNA is tightly folded into the nucleus of every cell in our body. This folding allows some genes to be 'expressed', or activated, while excluding others.

Dr Tim Mercer and Professor John Mattick from Sydney's Garvan Institute of Medical Research and Professor John Stamatoyannopoulos from Seattle's University of Washington analysed the genome's 3D structure, at high resolution.

Genes are made up of 'exons' and 'introns' – the former being the sequences that code for protein and are expressed, and the latter being stretches of noncoding DNA in-between. As the genes are copied, or 'transcribed', from DNA into RNA, the intron sequences are cut or 'spliced' out and the remaining exons are strung together to form a sequence that encodes a protein. Depending on which exons are strung together, the same gene can generate different proteins.

Using vast amounts of data from the ENCODE project*, Dr Tim Mercer and colleagues have inferred the folding of the genome, finding that even within a gene, selected exons are easily exposed.

“Imagine a long and immensely convoluted grape vine, its twisted branches presenting some grapes to be plucked easily, while concealing others beyond reach,” said Dr Mercer. “At the same time, imagine a lazy fruit picker only picking the grapes within easy reach.

“The same principle applies in the genome. Specific genes and even specific exons, are placed within easy reach by folding.”

“Over the last few years, we've been starting to appreciate just how the folding of the genome helps determine how it's expressed and regulated,”

“This study provides the first indication that the three-dimensional structure of the genome can influence the splicing of genes.”

“We can infer that the genome is folded in such a way that the promoter region — the sequence that initiates transcription of a gene — is located alongside exons, and they are all presented to transcription machinery.”

“This supports a new way of looking at things, one that the genome is folded around transcription machinery, rather than the other way around. Those genes that come in contact with the transcription machinery get transcribed, while those parts which loop away are ignored.”

*ENCODE project

The National Human Genome Research Institute launched a public research consortium named ENCODE, the Encyclopedia Of DNA Elements, in September 2003, to carry out a project to identify all functional elements in the human genome sequence.

Media Contact

Alison Heather EurekAlert!

More Information:

http://www.garvan.org.au

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors