Genetic factors behind high blood pressure

Researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have participated in an international study of 200,000 Europeans which has identified 16 new genetic variations that affect blood pressure. The discovery, presented in Nature, is an important step towards better diagnostics and treatment.

A billion people worldwide suffer from high blood pressure and are therefore in the danger zone for the likes of heart disease and stroke. Effective prediction and control of high blood pressure is therefore one of the most pressing global health issues.

Analyzing genetic data

Researchers from the Sahlgrenska Academy at the University of Gothenburg are among an international consortium of more than 400 researchers from the US, Europe, Asia and Australia hoping to identify which parts of our genes influence blood pressure by sifting through vast quantities of genetic data.

2.5 million DNA variations

In their latest study, the researchers analysed more than 2.5 million DNA variations from more than 200,000 Europeans. The results, published in the renowned journal Nature, reveal 16 previously unknown genetic regions with interesting genes that regulate the body's blood pressure – both the lower level when the heart expands (diastolic) and the upper level when the heart contracts (systolic).

Genetic risk groups

With the help of these newly discovered genetic variations, the researchers have constructed genetic risk groups to help predict the risk of strokes and heart attacks.

“We’ve been able to classify individuals on the basis of how many risk variants for hypertension they have in their genes” says Fredrik Nyberg, a researcher from the Sahlgrenska Academy working on the project.

Important step forward

In another study published at the same time in Nature Genetics, the researchers from Gothenburg identify additional new genetic regions and genes controlling two other measures of blood pressure: pulse pressure (the difference between systolic and diastolic) and mean arterial pressure (an average of systolic and diastolic). The study shows how important it is to analyse different measures of blood pressure. For example, pulse pressure is a marker of rigidity in the arteries carrying blood from the heart to the body, and different genes seem to control different aspects of blood pressure.

The results of the two studies are considered to be an important step towards understanding how the body regulates blood pressure, and the newly discovered genetic regions are potential targets for future treatments.

Fredrik Nyberg, Sahlgrenska Academy, University of Gothenburg
Tel: +46 (0)31 786 6289
Mobile +46 (0)702 619226
E-mail: fredrik.nyberg@amm.gu.se
Journal: Nature | Letter – doi:10.1038/nature10405
Title: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Authors: Georg B. Ehret, Patricia B. Munroe, Kenneth M. Rice, Murielle Bochud, Andrew D. Johnson, Daniel I. Chasman, Albert V. Smith, Bruce M. Psaty, Gonçalo R. Abecasis, Aravinda Chakravarti, Paul Elliott, Cornelia M. van Duijn, Christopher Newton-Cheh, Daniel Levy, Mark J. Caulfield & Toby Johnson

Media Contact

Helena Aaberg idw

More Information:

http://www.gu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors