New gene variant may explain psychotic features in bipolar disorder

The study, which is published in the scientific periodical Molecular Psychiatry, identifies a gene variant associated with an increased production of KYNA. The discovery contributes to the further understanding of the link between inflammation and psychosis – and might pave the way for improved therapies.

Kynurenic acid (KYNA) is a substance that affects several signalling pathways in the brain and that is integral to cognitive function. Earlier studies of cerebrospinal fluid have shown that levels of KYNA are elevated in the brains of patients with schizophrenia or bipolar diseases with psychotic features. The reason for this has, however, not been fully understood.

KMO is an enzyme involved in the production of KYNA, and the Karolinska Institutet team has now shown that some individuals have a particular genetic variant of KMO that affects its quantity, resulting in higher levels of KYNA. The study also shows that patients with bipolar disease who carry this gene variant had almost twice the chance of developing psychotic episodes.

KYNA is produced in inflammation, such as when the body is exposed to stress and infection. It is also known that stress and infection may trigger psychotic episodes. The present study provides a likely description of this process, which is more likely to occur in those individuals with the gene variant related to higher production of KYNA. The researchers also believe that the discovery can help explain certain features of schizophrenia or development of other psychotic conditions.

“Psychosis related to bipolar disease has a very high degree of heredity, up to 80 per cent, but we don't know which genes and which mechanisms are involved,” says Martin Schalling, Professor of medical genetics at Karolinska Institutet's Department of Molecular Medicine and Surgery, also affiliated to the Center for Molecular Medicine (CMM). “This is where our study comes in, with a new explanation that can be linked to signal systems activated by inflammation. This has consequences for diagnostics, and paves the way for new therapies, since there is a large arsenal of already approved drugs that modulate inflammation.”

The study was financed with grants from Karolinska Institutet, the Swedish Research Council, the Söderström-Königska Foundation, the Royal Physiographic Society, the Fredrik and Ingrid Thuring Foundation, the Åhlén Foundation, the Department of Clinical Psychiatry at Huddinge University Hospital, the William Lion Penzner Foundation and the US government.

Publication: 'The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and KMO expression', Catharina Lavebratt, Sara Olsson, Lena Backlund, Louise Frisén, Carl Sellgren, Lutz Priebe, Pernilla Nikamo, Lil Träskman-Bendz, Sven Cichon, Marquis P. Vawter, Urban Ösby, Göran Engberg, Mikael Landén, Sophie Erhardt, and Martin Schalling, Molecular Psychiatry, online first 5 March 2013. Embargoed until Tuesday 5 March at 9 am UK time / 10 am CET / 4 am US ET.

For further information about the study, please contact:

Dr. Catharina Lavebratt, Associate Professor
Department of Molecular Medicine and Surgery, Karolinska Institutet
Tel: 46-08-5177 6524.
Email: catharina.lavebratt@ki.se
Dr. Martin Schalling, Professor
Department of Molecular Medicine and Surgery, Karolinska Institutet
Tel: 46-070-4841230
Email: martin.schalling@ki.se
Contact the Press Office: ki.se/pressroom
Karolinska Institutet – a medical university: ki.se/English

Media Contact

Press Office EurekAlert!

More Information:

http://www.ki.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors