Fragile X syndrome protein linked to breast cancer progression

The researchers demonstrated that FMRP acts as a master switch controlling the levels of several proteins involved in different stages of aggressive breast cancer, including the invasion of cancer cells into blood vessels and the spread of these cancer cells to other tissues. The work is published on-line in EMBO Molecular Medicine.

The authors identified high levels of FMRP in human breast cancer tissue microarrays and also examined the effects of FMRP levels in a mouse model to study breast cancer. In these mice, high levels of FMRP in primary breast cancer tumours were also linked to the spread of the cancer to the lungs and the development of secondary metastasis; in contrast, reduction of FMRP led to a decrease in metastasis.

The role of FMRP is well known in the brain, where its absence leads to Fragile X Syndrome, the most prevalent form of inherited intellectual disability in humans. The present study explored the direct relationship between the levels of FMRP and the progression of breast cancer.

“Previous studies indicated that patients with Fragile X Syndrome had a decreased risk of developing cancer but little is known about the molecular events that lead to this beneficial effect. We showed that high levels of the FMRP protein in human breast tissue samples are linked to increased risk of breast cancer and the spread of the disease to other tissues throughout the body,” EMBO Member Claudia Bagni from VIB/KU Leuven, Belgium, and the University of Rome, Italy, who led the study, remarked. “Our results suggest that FMRP acts as a master regulator of a large group of mRNAs that are involved in multiple steps of cancer progression”.

The researchers suggest that the levels of FMRP might be used as an indicator of aggressive breast cancer and could be used to predict the likelihood of the spread of cancer to other organs like the lung. In the study, the authors found that FMRP levels correlate with the highly aggressive Triple Negative Breast Cancer. Breast cancer is the most common form of cancer in women and has a poor prognosis. It often comes back years after treatment and spreads throughout the body.

The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

Rossella Luca, Michele Averna, Francesca Zalfa, Manuela Vecchi, Fabrizio Bianchi, Giorgio La Fata, Franca del Nonno, Roberta Nardacci, Marco Bianchi, Paolo Nuciforo, Sebastian Munck, Paola Parrella, Rute Moura, Emanuela Signori, Robert Alston, Anna Kuchnio, Maria Giulia Farace, Vito Michele Fazio, Mauro Piacentini, Bart De Strooper, Tilmann Achsel, Giovanni Neri, Patrick Neven, D. Gareth Evans, Peter Carmeliet, Massimiliano Mazzone and Claudia Bagni

Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201302847/abstract

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Céline Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Speaking without vocal cords, thanks to a new AI-assisted wearable device

The adhesive neck patch is the latest advance by UCLA bioengineers in speech technology for people with disabilities. People with voice disorders, including those with pathological vocal cord conditions or…

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

Partners & Sponsors