'Fracture' prints, not fingerprints, help solve child abuse cases

Michigan State University researchers Roger Haut and Todd Fenton have discovered that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Pictured are areas of the skull being stressed on impact. As the stresses become more severe and approach levels that might cause fracture, they become yellow to orange, and finally red for very intense levels of stress. Importantly, an area of high-intensity cranial stress develops early and away from the site of actual impact. Implications from the research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes. Credit: Michigan State University

Implications from the Michigan State University research could help with the determination of truth in child abuse cases, potentially resulting in very different outcomes.

Until now, multiple skull fractures meant several points of impact to the head and often were thought to suggest child abuse.

Roger Haut, a University Distinguished Professor in biomechanics, and Todd Fenton, a forensic anthropologist, have now proven this theory false. They've found that a single blow to the head not only causes one fracture, but may also cause several, unconnected fractures in the skull. Additionally, they've discovered that not all fractures start at the point of impact – some actually may begin in a remote location and travel back toward the impact site.

The team's findings were recently presented at the annual meeting of the American Academy of Forensic Sciences.

“It's a bit like smashing raw hamburger into a patty on the grill,” Haut said. “When you press down on the meat to flatten it, all the edges crack. That's what can happen when a head injury occurs.”

Because piglet skulls have similar mechanical properties as infant human skulls – meaning they bend and break in similar ways – Haut and Fenton used the already deceased specimens in their research and found they were able to classify the different fracture patterns with a high degree of accuracy.

“Our impact scenarios on the piglet skulls gave us about an 82 percent accuracy rate, while on the older skulls, it improved to about 95 percent,” Fenton said.

To help them get to this level of accuracy, both researchers teamed up with Anil Jain, a University Distinguished Professor in computer science and engineering at MSU, to develop a mathematical algorithm to help classify the fractures.

“A major issue in child death cases is you never really know what happened,” Haut said. “The prosecutor may have one idea, the medical examiner another, and the defendant a completely different scenario.”

Fenton and Haut's close relationship with medical examiners often results in them being called upon in certain, hard-to-determine cases. They've used this new knowledge to help solve these cases, but both are also looking to use Jain's algorithm in an online resource that will provide even more assistance to investigators.

The team is currently developing a database, or Fracture Printing Interface, that will allow forensic anthropologists and investigators to upload human fracture patterns from different abuse cases and help them determine what most likely caused an injury.

“We will never know with 100 percent probability what happened in many of these cases, but this interface will give us a higher chance of figuring that out,” Haut said.

###

Their research has been funded through multiple grants from the National Institute of Justice.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Media Contact

Sarina Gleason EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors