Collecting energy from raindrops using solar panel technology

This diagram shows what these D-TENG panels might look like. It also illustrates how the bridge structure, when combined with the lower electrodes, can lead to improved energy storage.
Credit: iEnergy, Tsinghua University Press

When raindrops fall from the sky, they can produce a small amount of energy that can be harvested and turned into electricity. It is a small-scale version of hydropower, which uses the kinetic energy of moving water to produce electricity.

Researchers have proposed that the energy collected from raindrops could be a potential source of clean, renewable power. However, this technology has been difficult to develop on a large scale, which has limited its practical application.

To collect raindrop energy, a device called a triboelectric nanogenerator (TENG), which uses liquid-solid contact electrification, has been shown to successfully harvest the electricity from raindrops. This technology also successfully harvests energy from waves and other forms of liquid-solid triboelectric power generation. However, droplet-based TENG (D-TENGs) have a technical limitation from connecting more than one of these panels together, which reduces overall power output. A recently published paper outlines how modeling D-TENG panels after solar panel arrays makes harvesting raindrop energy more efficient, broadening its application.

The paper was published in iEnergy on June 29.

“Although D-TENGs have ultra-high instantaneous output power, it is still difficult for a single D-TENG to continuously supply power for megawatt-level electrical equipment. Therefore, it is very important to realize the simultaneous utilization of multiple D-TENGs,” said Zong Li, a professor at the Tsinghua Shenzhen International Graduate School at Tsinghua University in Shenzhen, China. “Referring to the design of solar panels in which multiple solar power generation units are connected in parallel to supply the load, we are proposing a simple and effective method for raindrop energy harvesting.”

When multiple D-TENGs are connected, there is unintended coupling capacitance between the panels’ upper electrode and lower electrode. This unintended coupling capacitance reduces the power output of the D-TENG arrays. To reduce the effect of this problem, researchers proposed bridge array generators, which use array lower electrodes to reduce the influence of the capacitance.

When raindrops fall on the surface of the panel, a process called triboelectrification produces and stores the energy from the rain. When the droplet falls on the surface of the panel, called the FEP surface, the droplet becomes positively charged, and the FEP surface negatively charged. “The amount of charge generated by each droplet is small and the surface charge on the FEP will gradually dissipate. After a long time on the surface, the charges on the FEP surface will gradually accumulate to saturation,” said Li. “At this point, the dissipation rate of the FEP’s surface charge is balanced with the amount of charge generated by each impact of the droplet.”

In order to demonstrate the success of the bridge array generators with the array lower electrodes, the conventional D-TENG was compared to the bridge array generators. Researchers also compared the performance of the bridge array generators with different sizes of sub-electrodes. The thickness of the panels was also studied to see if that had an effect on any power loss. Increasing the FEP surface thickness lead to decreased coupling capacitance while maintaining the surface charge density, both of which could improve the performance of the bridge array generator.

When bridge array generators were developed for raindrop energy collection and utilized array lower electrodes and bridge reflux structures, the raindrop collection panels could be independent of each other. This means that unintended power loss could be reduced. “The peak power output of the bridge array generators is nearly 5 times higher than that of the conventional large-area raindrop energy with the same size, reaching 200 watts per square meter, which fully shows its advantages in large-area raindrop energy harvesting. The results of this study will provide a feasible scheme for large-area raindrop energy harvesting,” said Li.

Other contributors include Bin Cao and Liming Wang of the Tsinghua Shenzhen International Graduate School at Tsinghua University; Zhonghao Zhang of the China Electric Power Research Institute in Beijing; and Zhong Lin Wang of the Beijing Institute of Nanoenergy and Nanosystems at the Chinese Academy of Sciences in Beijing.

The National Natural Science Foundation of China (52007095) funded this research.

 

About iEnergy

iEnergy (Published by Tsinghua University Press), has multiple meanings, intelligent energy, innovation for energy, internet of energy, and electrical energy due to “i” is the symbol of current. iEnergy, publishing quarterly, is a cross disciplinary journal aimed at disseminating frontiers of technologies and solutions of power and energy. The journal publishes original research on exploring all aspects of power and energy, including any kind of technologies and applications from power generation, transmission, distribution, to conversion, utilization, and storage. iEnergy provides a platform for delivering cutting-edge advancements of sciences and technologies for the future-generation power and energy systems.

 

About Tsinghua University Press

Established in 1980, belonging to Tsinghua University, Tsinghua University Press (TUP) is a leading comprehensive higher education and professional publisher in China. Committed to building a top-level global cultural brand, after 42 years of development, TUP has established an outstanding managerial system and enterprise structure, and delivered multimedia and multi-dimensional publications covering books, audio, video, electronic products, journals and digital publications. In addition, TUP actively carries out its strategic transformation from educational publishing to content development and service for teaching & learning and was named First-class National Publisher for achieving remarkable results.

Journal: iEnergy
DOI: 10.23919/IEN.2023.0015
Article Title: Rational TENG arrays as a panel for harvesting large-scale raindrop energy
Article Publication Date: 29-Jun-2023

Media Contact

Yao Meng
Tsinghua University Press
mengy@tup.tsinghua.edu.cn
Office: 86-108-347-0574

www.tsinghua.edu.cn

Media Contact

Yao Meng
Tsinghua University Press

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors