Cancer rejection: Scientists discover crucial molecule

Using advanced multi-photon microscopy, the scientists have tracked the migration of immune cells called T cells within tumours in experimental models, and found that the surface molecule (CD44) directly impacts whether a tumour progresses or is rejected by T cells.

Professor Wolfgang Weninger, Head of the Immune Imaging program at Centenary, says this discovery advances our knowledge of the immune processes at play in cancer.

“The immune system and cancer were first linked in the 1900s but it wasn't until the 1980s that interactions between the immune system and cancer cells became a focus for medical researchers,” says Professor Weninger.

“We know that migration of T cells within tumours is very important for rejection but we didn't know about how it worked. We found that this particular molecule regulates the navigation of T cells in tumours. In its absence, T cells are inhibited in migration and show a defect in their ability to reject a tumour.”

Understanding how tumours avoid the natural processes of the immune system is one of the biggest questions in cancer. Finding the answer could significantly improve cancer treatment.

Professor Weninger explains: “By understanding how the immune system fights tumours, we may be able to optimise cancer therapies in the future. It may provide the opportunity to design treatments that mimic certain aspects of immune responses and cellular processes, making cancer treatments less hit and miss and reducing the toll on patients.”

Centenary Institute Executive Director, Professor Mathew Vadas, points out this discovery has been made possible by recent advances in research technology – in particular multi-photon microscopy.

“Previously, cancer researchers could only build assumptions by linking series' of still images of the immune system at work,” Professor Vadas says. “Multi-photon microscopy allows us to make real time movies showing exactly how the immune cells interact and is opening up new frontiers for medical research.”

Professor Weninger, a world leader in this form of imaging, is driving this research revolution using one of Australia's first multi-photon microscopes at the Centenary Institute in Sydney.

This discovery firmly places Professor Weninger and his team's focus on the next piece of the puzzle – how does the actual process of tumour rejection work?

“This next stage of our research is very exciting. What are the physical interactions of T cells and tumours and how do the T cells actually defeat a tumour?” says Professor Weninger. “If we can get to the bottom of these immune system interplays, the benefits for cancer patients around the world could be truly enormous.”

Media Contact

Erin Sharp EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors