Blood 'fingerprints' for cancer

miRNAs are a class of naturally occurring small non-coding RNAs that have been linked with cancer development. Recent studies reporting individual miRNAs as diagnostic biomarkers of specific cancers were unable to rule out the possibility that these miRNAs appeared as a result of contamination.

Chen-Yu Zhang and colleagues are the first to comprehensively characterize entire blood miRNA profiles of healthy subjects and patients with lung cancer, colorectal cancer and diabetes, ruling out contamination. They propose that the specific serum miRNA expression profiles they identified constitute ‘fingerprints’ for cancer and disease.

Although tumour markers greatly improve diagnosis, current diagnostic techniques are prohibitively invasive and therefore have limited clinical application. The new approach is non-invasive and has the potential to transform the clinical management of various cancers and diseases through improving disease diagnosis, cancer classification, prognosis estimation, prediction of therapeutic efficacy, maintenance of surveillance following surgery, and the ability to forecast disease recurrence.

The new technique will also be useful to pharmacological companies in identifying population subgroups who are responsive to drugs that have failed in phase III clinical trials.

Media Contact

Chen-Yu Zhang EurekAlert!

More Information:

http://www.nju.edu.cn

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors