Atomic layer 3D printing

Not only is current lithography slow, it also wastes materials and energy, is poorly adapted to combining a large number of distinct materials, and extremely costly in terms of capital expenses.

A team of scientists and engineers led by Prof. Julien Bachmann from FAU plan to combine the expertise of the various consortium partners in the chemical control of ultrathin coatings (“atomic layer deposition”), in gas delivery, microelectromechanical devices, and microprocessing and automation, in order to demonstrate the potential of “atomic-layer 3D printing”, that is, the generation of arbitrary shapes with a vertical resolution in the order of one atom (or a tenth of one nanometer).

The consortium includes the companies ATLANT 3D Nanosystems, Femtika, and SEMPA Systems as well as the Institute of Electrical Engineering of the Slovak Academy of Sciences and FAU, and will be funded by approximately 3 million euros over a period of two years in the framework of the European Union’s “Fast Track to Innovation” programme.

The goal of the project is to design, build and test an industrial prototype of the atomic-layer 3D printer that can then be sold commercially.

Further information
Prof. Dr. Julien Bachmann
julien.bachmann@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

More Information:

http://www.fau.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors