Amphibian Froth

An unusual blue protein called ranasmurfin and found in the foam nests of a Malaysian tree frog has aroused the interest of a team of British, Brazilian, and Malaysian researchers led by Alan Cooper at the University of Glasgow and James H. Naismith at the University of St Andrews. The colored portion of the protein contains a previously unknown type of zinc-coordinated linkage between its subunits.

Many tropical frogs protect their sensitive eggs and embryos with a foam. When mating, the female excretes a protein-rich fluid that she, together with the male, whips into a sticky foam nest that is then stuck to a structure or plant overhanging a body of water. These tiny ecosystems contain an entire spectrum of previously unknown proteins and other macromolecules; they stabilize the foam, hold it firmly to its substrate, protect it from microbes and predators, prevent dehydration, and provide an ideal environment for the embryos.

The dark greenish-blue color of the nests of the Malaysian tree frog stems from ranasmurfin. Each monomer of this dimeric protein consists of 113 amino acids that are folded into a novel helical motif and stabilized through a series of cross-linkages, which includes an unusual lysine–tyrosine–quinone linkage. Even more unusual is the linkage between the two monomers, in which two lysine–tyrosine–quinone linkages are bridged by a nitrogen atom. This previously unknown type of linkage forms, together with two histidine groups, the binding site for a zinc ion. With its four ligands, the metal ion is thus in a tetrahedral environment. This structure is the unit responsible for the color (chromophore) of the protein.

Currently, the biological function of ranasmurfin can only be speculated. The scientists believe that this protein, which is present in relatively large amounts in the foam, is involved in the stabilization and adhesion of the foam. Proteins with similar linkages seem to play a role in the stabilization of adhesives and cements from mussels. Blue proteins are rare in nature and the chromophore in ranasmurfin has little in common with other blue-green proteins. The blue color could play a role in camouflaging the nests or protection from the sun.

Biological foams are an interesting source of novel proteins. Unusual variations, such as the linkages in the ranasmurfin chromophore, are often posttranslational, meaning they occur after translation of the genetic code into an amino acid chain, and are thus not predictable by the analysis of DNA sequences alone.

Author: Alan Cooper, University of Glasgow (UK), http://www.chem.gla.ac.uk/staff/alanc/

Title: Unusual Chromophore and Cross-Links in Ranasmurfin: A Blue Protein from the Foam Nests of a Tropical Frog

Angewandte Chemie International Edition 2008, 47, No. 41, 7853–7856, doi: 10.1002/anie.200802901

Media Contact

Alan Cooper Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors