Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in for a safe flight

01.09.2014

New study investigates spatial orientation in bats

As nocturnal animals, bats are perfectly adapted to a life without light. They emit echolocation sounds and use the delay between the reflected echoes to measure distance to obstacles or prey.

In their brains, they have a spatial map representing different echo delays. A study carried out by researchers at Technische Universität München (TUM) has shown for the first time that this map dynamically adapts to external factors.

Closer objects appear larger

When a bat flies in too close to an object, the number of activated neurons in its brain increases. As a result, the object appears disproportionately larger on the bat's brain map than objects at a safe distance, as if it were magnified. "The map is similar to the navigation systems used in cars in that it shows bats the terrain in which they are moving," explains study director Dr. Uwe Firzlaff at the TUM Chair of Zoology. "The major difference, however, is that the bats' inbuilt system warns them of an impending collision by enhancing neuronal signals for objects that are in close proximity."

Bats constantly adapt their flight maneuvers to their surroundings to avoid collisions with buildings, trees or other animals. The ability to determine lateral distance to other objects also plays a key role here. Which is why bats process more spatial information than just echo delays. "Bats evaluate their own motion and map it against the lateral distance to objects," elaborates the researcher.

Brain processes complex spatial information

In addition to the echo reflection time, bats process the reflection angle of echoes. They also compare the sound volume of their calls with those of the reflected sound waves and measure the wave spectrum of the echo. "Our research has led us to conclude that bats display much more spatial information on their acoustic maps than just echo reflection."

The results show that the nerve cells interpret the bats' rapid responses to external stimuli by enlarging the active area in the brain to display important information. "We may have just uncovered one of the fundamental mechanisms that enables vertebrates to adapt flexibly to continuously changing environments," concludes Firzlaff.

###

Publication:

Echo-acoustic flow dynamically modifies the cortical map of target range in bats; Sophia K. Bartenstein, Nadine Gerstenberg, Dieter Vanderelst, Herbert Peremans & Uwe Firzlaff; Nature Communications, DOI: 10.1038/ncomms5668

Contact: 

Dr. Uwe Firzlaff
Technische Universität München
Chair of Zoology
Phone: +49 8161 71-2803
uwe.firzlaff@wzw.tum.de
http://zoologie.wzw.tum.de/

Barbara Wankerl | Eurek Alert!

Further reports about: Phone TUM bats difference factors fundamental measure mechanisms objects spatial

More articles from Studies and Analyses:

nachricht Mental Disorders and Physical Diseases Co-occur in Teenagers
08.04.2015 | Universität Basel

nachricht Researchers observe major hand hygiene problems in operating rooms
30.03.2015 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>