Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How young mice phone home: Study gives clue to how mothers' brains screen for baby calls

12.06.2009
Emory University researchers have identified a surprising mechanism in the brains of mother mice that focuses their awareness on the calls of baby mice. Their study, published June 11 in Neuron, found that the high-frequency sounds of mice pups stand out in a mother's auditory cortex by inhibiting the activity of neurons more attuned to lower frequency sounds.

"Previous research has focused on how the excitation of neurons can detect or interpret sounds, but this study shows the key role that inhibition may play in real situations," said Robert Liu, assistant professor of biology and senior author of the study.

In 2007, Liu and colleagues were the first to demonstrate that the behavioral context in which communication sounds are heard affects the brain's ability to detect, discriminate and respond to them. Specifically, the researchers found that the auditory neurons of female mice that had given birth were better at detecting and discriminating vocalizations from mice pups than auditory neurons in virgin females.

Experiments on awake mice
While that experiment was done with anesthetized mice, the current study by Liu's lab is the first to record the activity of neurons in the auditory cortex of awake mice. Both female mice that had given birth and virgin female mice with no experience caring for mice pups were used in the study.

When exposed to the high-frequency whistles of mice pups, which fall into the 60 to 80 kilohertz range, a large area of neurons in the auditory cortex of the mother mice was more strongly inhibited than in the virgin mice. The pattern of excitation of neurons was similar, however, for both the mothers and virgins.

"Something different is happening in the mothers' brains when they are processing the same sound, and this difference is consistent," Liu said. "The inhibition of neurons appears to be enhancing the contrast in the sound of mice pups, so they stand out more in the acoustic environment."

Showing neural plasticity

Liu's research focuses on how the brain evolves to process sounds in the natural environment. "By understanding normal functioning of the auditory processes in the brain, then we can begin to understand what is breaking down in disease situations, such as following a stroke or brain lesion," he said.

Until recently, it had been widely assumed that the auditory cortex acted simply as a static filter, and that areas downstream in the brain did the complex task of learning to parse meaning from sounds.

"What our experiments help demonstrate is that even at this relatively early stage of cortical sound processing, responses are dynamic," Liu said. "The auditory cortex has plasticity, so that sounds that become behaviorally relevant to us can get optimized."

More research is needed, he added, to determine whether the changes in the brains of mother mice is due to hormonal shifts, the behavioral experience of caring for pups, or both.

The study authors include Edgar Galindo-Leon, a post-doctoral fellow in Liu's lab, and Frank Lin, a graduate student in the lab. Their research was funded by the National Institute for Deafness and Communication Disorders and the NSF Center for Behavioral Neuroscience.

Carol Clark | EurekAlert!
Further information:
http://www.emory.edu
http://www.emory.edu/esciencecommons

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>