Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yosemite bears and human food: Study reveals changing diets over past century

03.03.2014

Management strategies implemented since 1999 have successfully limited the availability of human food to black bears in Yosemite, but problems remain

Black bears in Yosemite National Park and elsewhere are notorious for seeking out human food, even breaking into cars and cabins for it. A new study reveals just how much human food has contributed to the diets of Yosemite bears over the past century.


Researcher Jack Hopkins used barbed-wire snares to collect hair samples from bears in Yosemite National Park. Analysis of isotope ratios in hair samples showed how much of the bears' diets came from human food.

Credit: Photo courtesy of Jack Hopkins

Researchers at the University of California, Santa Cruz, were able to estimate the proportion of human-derived food in bears' diets by analyzing chemical isotopes in hair and bone samples. The results, published in the March issue of Frontiers in Ecology and the Environment, show how bears' diets have changed over the years as the National Park Service took different approaches to managing bears and people in Yosemite.

"Yosemite has a rich history of bear management practices as a result of shifting goals over the years," said Jack Hopkins, lead author of the paper and a research fellow at UC Santa Cruz. "What we found was that the diets of bears changed dramatically after 1999, when the park got funding to implement a proactive management strategy to keep human food off the landscape."

That funding has been used primarily to buy bear-resistant food-storage containers and increase enforcement of their use, hire more staff to manage problem bears, and establish a "bear team" to increase visitor compliance with rules for storing food in areas such as campgrounds and hotels. The study, which focused on bears that had learned to eat human food or food waste, found that the proportion of human foods in their diets decreased by about 63 percent after the new strategies were implemented. Unfortunately, according to Hopkins, once a bear gets used to eating human food it will continue looking for it, and even when visitor compliance is high, there will always be a few people who make the mistake of leaving their food where bears can get it.

Hopkins, who worked as a biologist in Yosemite National Park for several years, conducted the study as a graduate student at Montana State University. He teamed up with coauthor Paul Koch, a professor of Earth sciences and dean of physical and biological sciences at UC Santa Cruz, to do the isotope analysis of hair and bone samples. Contemporary hair samples were collected during bear management actions and from barbed-wire hair snares deployed throughout Yosemite. Historical samples were obtained from museum collections.

"This study shows the power of using museum specimens and archived historical material to reconstruct the ecology of a species and to answer pressing management questions," Koch said. "The remarkable thing is that the bears that eat human food are now back to the same level of dumpster diving as in 1915, despite the fact that there are now millions of visitors in Yosemite every year and presumably a lot more garbage."

Yosemite National Park was established in 1890, and Hopkins obtained samples from bears killed between 1915 and 1919 to represent the earliest time period. In those early years, bears were attracted to garbage dumps in the park and were often killed when they became a nuisance. Visitors liked to see bears, however, and in 1923 the park began intentionally feeding bears where visitors could watch them. The last artificial feeding area closed in 1971. There was also a fish hatchery in Yosemite Valley, from 1927 to 1956, where bears once helped themselves to fresh trout from the holding tanks. But closing the hatchery and the feeding areas didn't stop bears from eating human food.

"The bears just went back to the campgrounds and hotels and continued to find human food," Hopkins said.

The average figures for the proportion of human food in bear diets during the four time periods in the study were 13 percent for the period from 1915 to 1919; 27 percent for 1928 to 1939; 35 percent for 1975 to 1985; and 13 percent again for 2001 to 2007.

These results are based on a kind of chemical forensics in which Koch's lab specializes. Isotopic analysis of an animal's tissues can yield clues to its diet because of natural variability in the abundance of rare isotopes of elements such as carbon and nitrogen. Isotope ratios (the ratio of carbon-13 to carbon-12, for example) are different in human foods than in the wild plants and animals that black bears naturally eat in Yosemite, partly due to the large amounts of meat and corn-based foods in our diets.

In order to analyze the data from Yosemite bears that ate a mixture of human and natural foods, Hopkins had to get samples from bears that did not eat any human food, and he had to track down samples of the non-native trout that had been raised in the hatchery. He also needed data representing a 100 percent human food diet, for which he turned to the Smithsonian Institution for samples of human hair from different periods over the past century.

"He searched far and wide to get the collection of samples we analyzed, and that collection made the study powerful enough to answer the question of how management practices affect bear diets," Koch said.

According to Hopkins, the key to managing bear problems is to prevent bears from becoming conditioned to eat human food in the first place. He has done other studies using genetic analysis to show that the offspring of bears that eat human food end up having the same foraging behaviors as their mothers. And when problem bears are relocated away from human food sources, they eventually return and continue seeking human food until they are killed, often by management staff.

"People like to see bears, and they don't like to hear about bears being killed. But the bears they often see in visitor-use areas like Yosemite Valley are the ones that are conditioned to eat human food, and those are the ones that become problems and have to be killed," Hopkins said.

In addition to his current affiliation with UC Santa Cruz, Hopkins has postdoctoral fellowships with Peking University in Beijing, China, and the University of Alberta in Edmonton, Canada. The coauthors of the paper include Jake Ferguson at the University of Florida and Steven Kalinowski at Montana State University. This research was funded by the Yosemite National Park Bear Council.

Tim Stephens | EurekAlert!

Further reports about: Hopkins Yosemite Yosemite National Park bears chemical isotopes isotopes

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>