Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-Rays for Early Alzheimer's Disease Detection

18.06.2009
Researchers demonstrate ability of experimental technique to image telltale brain plaques

Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have demonstrated a new, highly detailed x-ray imaging technique that could be developed into a method for early diagnosis of Alzheimer’s disease.

The technique has previously been used to look at tumors in breast tissue and cartilage in human knee and ankle joints, but this study is the first to test its ability to visualize a class of miniscule plaques that are a hallmark feature of Alzheimer’s disease. Their results will appear in a July 2009 edition of the journal NeuroImage.

Images of the brain of a transgenic mouse obtained through histology and the corresponding brain region imaged with DEI in computed tomography mode.

Scientists have long known that Alzheimer’s disease is associated with plaques, areas of dense built-up proteins, in the affected brain. Many also believe that these plaques, called amyloid beta (Aß) plaques after the protein they contain, actually cause the disease. A major goal is to develop a drug that removes the plaques from the brain. However, before drug therapies can be tested, researchers need a non-invasive, safe, and cost-effective way to track the plaques’ number and size.

That is no easy task: Aß plaques are extremely small – on the micrometer scale, or one millionth of a meter. And conventional techniques such as computed tomography (CT) poorly distinguish between the plaques and other soft tissue such as cartilage or blood vessels.

“These plaques are very difficult to see, no matter how you try to image them,” said Dean Connor, a former postdoctoral researcher at Brookhaven Lab now working for the University of North Carolina. “Certain methods can visualize the plaque load, or overall number of plaques, which plays a role in clinical assessment and analysis of drug efficacy. But these methods cannot provide the resolution needed to show us the properties of individual Aß plaques.”

A technique developed at Brookhaven, called diffraction-enhanced imaging (DEI), might provide the extra imaging power researchers crave. DEI, which makes use of extremely bright beams of x-rays available at synchrotron sources such as Brookhaven’s National Synchrotron Light Source, is used to visualize not only bone, but also soft tissue in a way that is not possible using standard x-rays. In contrast to conventional sources, synchrotron x-ray beams are thousands of times more intense and extremely concentrated into a narrow beam. The result is typically a lower x-ray dose with a higher image quality.

In this study, researchers from Brookhaven and Stony Brook University used DEI in a high-resolution mode called micro-computed tomography to visualize individual plaques in a mouse-brain model of Alzheimer’s disease. The results not only revealed detailed images of the plaques, but also proved that DEI can be used on whole brains to visualize a wide range of anatomical structures without the use of a contrast agent.

The images are similar to those produced by high-resolution magnetic resonance imaging (MRI), with the potential to even exceed MRI pictures in resolution, Connor said. “The contrast and resolution we achieved in comparison to other types of imaging really is amazing,” he said. “When DEI is used, everything just lights up.”

The radiation dose used for this study is too high to safely image individual A• plaques in humans – the ultimate goal – but the results provide researchers with promising clues.

“Now that we know we can actually see these plaques, the hope is to develop an imaging modality that will work in living humans,” Connor said. “We’ve also now shown that we can see these plaques in a full brain, which means we can produce images from a live animal and learn how these plaques grow.”

Funding for this study was provided by the National Institutes of Health, the National Cancer Institute, and Brookhaven Lab’s Laboratory Directed Research and Development program. The National Synchrotron Light Source is funded by the Office of Basic Energy Sciences within the DOE Office of Science.

How it works
To make a diffraction-enhanced image, x-rays from the synchrotron are first tuned to one wavelength before being beamed at an anatomical structure or slide. As the monochromatic (single wavelength) beam passes through the tissue, the x-rays scatter and refract, or bend, at different angles depending on the characteristics of the tissue. The subtle scattering and refraction are detected by what is called an analyzer crystal, which diffracts, or changes the intensity, of the x-rays by different amounts according to their scattering angles.

The diffracted beam is passed onto a radiographic plate or digital recorder, which documents the differences in intensity to show the interior structural details.

Kendra Snyder | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Alzheimer Brookhaven DEI Laboratory MRI Science TV Source Synchrotron X-rays blood vessel computed tomography

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>