Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When is it worth remanufacturing?

It seems like a no-brainer: Remanufacturing products rather than making new ones from scratch — widely done with everything from retread tires to refilled inkjet cartridges to remanufactured engines — should save a lot of energy, right?

Not so fast, says a new study by researchers at MIT.

In some cases, the conventional wisdom is indeed correct. But out of 25 case studies on products in eight categories done by a team led by Professor of Mechanical Engineering Timothy Gutowski, there were just as many cases where remanufacturing actually cost more energy as cases where it saved energy. And for the majority of the items, the savings were negligible or the energy balance was too close to call.

Why are the new results so different from what might have been assumed? The MIT team looked at the total energy used over the lifetime of a product — a life-cycle analysis — rather than just the energy used in the manufacturing process itself. In virtually all cases, it costs less money and less energy to make a product from the recycled "core" — the reusable part of the product — than to start from scratch. But the catch is that many of these remanufactured products are less energy efficient, or newer versions are more energy efficient, so the extra energy used over their lifetime cancels out the savings from the manufacturing stage.

A simple and familiar example is retread tires. They do indeed require less energy to make than new tires, but their rolling resistance might turn out to be just a bit higher, which would mean their energy advantage is eaten up by the extra gas used while driving on them.

The study, published in the journal Environmental Science & Technology, is the latest from Gutowski and his students that, as he puts it, "takes what appears to be a simple, straightforward problem and shows that the world is a far more complicated place than people thought." The paper was co-authored by MIT materials science and engineering graduate student Sahil Sahni; Avid Boustani SM '10, a recent graduate from the Department of Mechanical Engineering; and Stephen Graves, the Abraham J. Siegel Professor of Management in the MIT Sloan School of Management. The work was supported by the MIT Energy Initiative and the Singapore-MIT Alliance.

What often turns out to be the case, Gutowski says, is that "new technology shows up that is so much more efficient, from an energy point of view, that you should get rid of the old device" rather than having it fixed or buying a remanufactured version. For example, the efficiency of many new appliances — such as refrigerators and washing machines — are so much improved over older models that, in terms of energy use, a new model is almost always the better choice.

Unfortunately, that is typically not the way people and businesses make their choices. "The decision is always on cost, not energy," Gutowski says. For example, a remanufactured electric motor, in which the metal core is reused but wound with new wires, is typically 0.5 to 1 percent less efficient than a newer motor. "There is still a cost advantage" to the remanufactured motors, he says, "but from an energy point of view, it's the opposite."

Other effects stem from remanufactured products going to different markets than their original destinations. For example, old cell phones can be remanufactured, but the remanufactured phones tend to be sold in developing countries. "If it goes to a different market, it leads to an expansion of the market," Gutowski explains, so the overall level of cell phone usage globally — and the energy needed to power them — ends up increasing.

For some kinds of products, the benefits of remanufacturing are unequivocal. It clearly makes sense to remanufacture anything that consumes an insignificant amount of energy when it is being used, he says — for example, furniture.

Gutowski emphasizes that this research does not necessarily suggest a specific course of action. For any given product, there may be other reasons for preferring the remanufactured version even if it produces a net energy penalty. For example, remanufacturing may reduce the burden on landfills, reduce use and disposal of some toxic materials, or produce needed jobs in a particular area. And the expanded use of cell phones may have important social benefits, such as contributing to the recent wave of revolutions in North Africa and the Middle East. "We're not saying you shouldn't do it," he says — just suggesting that it's worth understanding the decision's effects in their entirety.

"You think you're doing the right thing, it sounds so simple," Gutowski says. But when it comes to understanding the true impact of purchasing decisions on energy use, "things are far more complicated than we expect."

Marta Buczek | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>