Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the world burned less

30.07.2012
Study: Cool climate, not population loss, led to fewer fires

In the years after Columbus' voyage, burning of New World forests and fields diminished significantly – a phenomenon some have attributed to decimation of native populations by European diseases. But a new University of Utah-led study suggests global cooling resulted in fewer fires because both preceded Columbus in many regions worldwide.

"The drop in fire [after about A.D. 1500] has been linked previously to the population collapse. We're saying no, there is enough independent evidence that the drop in fire was caused by cooling climate," says the study's principal author, Mitchell Power, an assistant professor of geography at the University of Utah.

"The implication is that climate is a large-scale driver of fire. That's a key finding. Climate is driving fire on global and continental scales," says Power, who also is curator of the Garrett Herbarium at the Natural History Museum of Utah, which is part of the University of Utah.

The new study analyzed worldwide charcoal samples spanning 2,000 years. It will be published online during August in the journal The Holocene, which is the name of the geological epoch covering roughly the last 11,500 years of Earth's history. It was funded by the National Science Foundation and the Natural History Museum of Utah.

The study deals with the Little Ice Age, a period when Earth's climate cooled, causing New York Harbor to freeze over in 1780, among other effects. Estimates of when the Little Ice Age started range from the 1200s to the 1500s. It ended in the early 1800s. Possible causes include some combination of increased dust from volcanic eruptions, decreased solar activity, and changes in circulation of the ocean and atmosphere.

"The decrease in fire on a very large scale – globally and in the Americas – was controlled by this cooling climate, which began prior to the population collapse, and climate alone is sufficient to explain large scale changes in burning," says Power.

"In a cooler atmosphere, you tend to get reduced convection, so you get reduced thunderstorms and ignition from lightning," he says. "Cooler climate also tends to maintain high levels of fuel moisture and soil moisture."

Today, warming climate and drought have been tied to increasing fires in the U.S. West and elsewhere. "In a world where climate is rapidly changing we need to pay more attention to this relationship between climate and fire," Power says

Power conducted the study with 19 other scientists, including paleoecologist Frank Mayle at the University of Edinburgh, U.K., and climatologist Patrick Bartlein at the University of Oregon. Other coauthors – who provided charcoal data or samples – are from University of Wisconsin, Madison and Oshkosh; Northern Arizona University; University of Gottingen, Germany; Canadian Forest Service; University of Montpellier, France; University of Bern, Switzerland; University of Calgary, Canada; University of Tennessee; Virginia Tech; University of North Carolina; University of Chile; Laval University, Quebec; Fordham College, New York; and Central Washington University.

Cooling Climate or Population Collapse?

After Columbus reached the New World in 1492, explorers brought European diseases such as smallpox that "decimated populations in the Americas – 10 million to 100 million dead, with most estimates in the 60 million range," Power says.

"All these people died abruptly – Mayans, Incas, Aztecs and down in Patagonia – they were all affected," he adds. "Agriculture was sharply reduced. Landscapes that had been cleared for agriculture started a process of plants growing back and infilling those abandoned fields. In terms of greenhouse gases, when you change from maintained cropland to woodlands, plants take up more carbon dioxide and there is less in the atmosphere. This has been pointed to as one mechanism for causing the Little Ice Age."

Power agrees population collapse may have led to reduced biomass burning in some local regions of the Americas. But the new study indicates the reduction in fire was actually global and began before Columbus in most areas, suggesting the Little Ice Age triggered most of the reduction in burning – not the other way around, Power says.

"If you look at independent climate records, cooling from the Little Ice Age was happening about 200 years before the population collapse," or about A.D. 1300, he says.

Power notes there is room for debate because the Little Ice Age varied in time and space, and didn't affect all parts of the world equally, although most places cooled.

A Record of Fire Left in Charcoal

The study used existing records and-or new samples of charcoal – burnt wood or other biomass – found in sediment cores from lake bottoms and bogs from some 600 sites around the world, about half in the Americas, and dated within the past 2,000 years.

"Whatever was burning, we see a record of that fire in lake sediments, from either aerial transport or erosion" of burned material, Power says.

Power manages the Global Charcoal Database that compiles data from all the existing studies that date charcoal samples and describe where they came from. The new study included 498 existing charcoal records and 93 new samples.

"We have gone back in and calculated the ages of all these charcoal samples," except for some dated independently in other recent studies, and then used recent radiocarbon dating calibrations to make sure all data are consistent, Power says.

"Greater than 80 percent of biomass burning records show a decline post-1500 in the Americas, he says. The other 20 percent may be from areas that were still fire-prone despite cooling or that simply had burning declines for which there are inadequate charcoal samples, he adds.

The study compared the charcoal records with previously published ancient climate records and population reconstructions. It found:

Clumping all the charcoal data in two groups – from the Americas or the Eastern Hemisphere – shows that in the Americas, biomass burning declined between 1500 and 1650 and stayed at a minimum until 1700, the same time as the peak of the Little Ice Age. That period was the lowest level of burning in the past 6,000 years.

In the Eastern Hemisphere, there was a prominent decline in burning that began about 1400 – well before the population collapse in the Americas. Power says cooling also started about a century earlier in the Eastern Hemisphere than in the Americas – more evidence cooling caused reduced burning. There was no parallel population collapse large enough to explain the reduction in burning, although a small downward blip in burning is noted in Europe around the time of the bubonic plague or Black Death.

In tropical Middle America – the Caribbean Basin, Mexico and Central America – climate cooling starting around 1350, when burning also begins to decline. Population collapse didn't begin until around 1500.

In tropical South America, climate changed around 1350 to 1400. There is debate whether it warmed or cooled. The population collapsed after 1500. Power says neither climate nor population strongly influenced post-Columbian biomass burning in that region, which declined only subtly and not until 1700. It also is possible the population that collapsed didn't use fire very much in agriculture – something a recent study coauthored by Power found in French Guiana.

In southern South America, ice-core and tree-ring growth studies show cooling began about 1450, well before an abrupt decline in burning in 1550. That would seem to support the theory that population collapse reduced burning – except that the region had little population, certainly not enough for any decline to trigger a reduction in burning.

Ice cores from Greenland show cooling started about 1450, and fire started to decline about 1500, according to charcoal for boreal Canada and the western United States. Cooling and reduced burning stopped about 1800. Despite the 50-year lag, Power says that is more evidence tying climate cooling to reduced biomass burning, particularly since the region had relatively few people at the time.

University of Utah Communications 201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350 www.unews.utah.edu

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>