Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Working with Solvents Tied to Cognitive Problems for Less-Educated People

Exposure to solvents at work may be associated with reduced thinking skills later in life for those who have less than a high school education, according to a study published in the May 29, 2012, print issue of Neurology®, the medical journal of the American Academy of Neurology.
The thinking skills of people with more education were not affected, even if they had the same amount of exposure to solvents.

“People with more education may have a greater cognitive reserve that acts like a buffer allowing the brain to maintain its ability to function in spite of damage,” said study author Lisa F. Berkman, PhD, of Harvard University in Cambridge, Mass. “This may be because education helps build up a dense network of connections among brain cells.”

The study involved 4,134 people who worked at the French national gas and electric company. The majority of the people worked at the company for their entire career. Their lifetime exposure to four types of solvents—chlorinated solvents, petroleum solvents, benzene and non-benzene aromatic solvents—was assessed. The participants took a test of thinking skills when they were an average of 59 years old and 91 percent were retired.

A total of 58 percent of the participants had less than a high school education. Of those, 32 percent had cognitive impairment, or problems with thinking skills, compared to 16 percent of those with more education. Among the less-educated, those who were highly exposed to chlorinated and petroleum solvents were 14 percent more likely to have cognitive problems than those with no exposure. People highly exposed to benzene were 24 percent more likely to have cognitive problems, and those highly exposed to non-benzene aromatic solvents were 36 percent more likely to have cognitive problems.

“These findings suggest that efforts to improve quality and quantity of education early in life could help protect people’s cognitive abilities later in life,” Berkman said, who worked alongside study author Erika Sabbath, ScD. “Investment in education could serve as a broad shield against both known and unknown exposures across the lifetime. This is especially important given that some evidence shows that federal levels of permissible exposure for some solvents may be insufficient to protect workers against the health consequences of exposure.”

The study was supported by the French National Research Agency and the French Agency for Environment and Work Health Security.

To learn more about brain health, visit

The American Academy of Neurology, an association of more than 25,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy. For more information about the American Academy of Neurology, visit

Rachel L. Seroka | American Academy of Neurology
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>