Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When work interferes with life

13.01.2010
As many as 50 per cent of people bring their work home with them regularly, according to new research out of the University of Toronto that describes the stress associated with work-life balance and the factors that predict it.

Researchers measured the extent to which work was interfering with personal time using data from a national survey of 1,800 American workers. Sociology professor Scott Schieman (UofT) and his coauthors Melissa Milkie (University of Maryland) and PhD student Paul Glavin (UofT) asked participants questions like: "How often does your job interfere with your home or family life?"; "How often does your job interfere with your social or leisure activities?"; and "How often do you think about things going on at work when you are not working?"

Schieman says, "Nearly half of the population reports that these situations occur 'sometimes' or 'frequently,' which is particularly concerning given that the negative health impacts of an imbalance between work life and private life are well-documented."

The authors describe five core sets of findings:

People with college or postgraduate degrees tend to report their work interferes with their personal life more than those with a high school degree;

Professionals tend to report their work interferes with their home life more than people in all other occupational categories;

Several job-related demands predict more work seeping into the home life: interpersonal conflict at work, job insecurity, noxious environments, and high-pressure situations; however, having control over the pace of one's own work diminishes the negative effects of high-pressure situations;

Several job-related resources also predict more work interference with home life: job authority, job skill level, decision-making latitude, and personal earnings;

As predicted, working long hours (50-plus per week) is associated with more work interference at home—surprisingly, however, that relationship is stronger among people who have some or full control over the timing of their work;

"We found several surprising patterns," says Schieman. "People who are well-educated, professionals and those with job-related resources report that their work interferes with their personal lives more frequently, reflecting what we refer to as 'the stress of higher status.' While many benefits undoubtedly accrue to those in higher status positions and conditions, a downside is the greater likelihood of work interfering with personal life."

For more information on the study, appearing in the December 2009 issue of the journal American Sociological Review, please contact:

Scott Schieman, lead author: 416-946-5905 or scott.schieman@utoronto.ca

April Kemick, media relations officer: 416-978-5949 or april.kemick@utoronto.ca

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>