Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When work interferes with life

13.01.2010
As many as 50 per cent of people bring their work home with them regularly, according to new research out of the University of Toronto that describes the stress associated with work-life balance and the factors that predict it.

Researchers measured the extent to which work was interfering with personal time using data from a national survey of 1,800 American workers. Sociology professor Scott Schieman (UofT) and his coauthors Melissa Milkie (University of Maryland) and PhD student Paul Glavin (UofT) asked participants questions like: "How often does your job interfere with your home or family life?"; "How often does your job interfere with your social or leisure activities?"; and "How often do you think about things going on at work when you are not working?"

Schieman says, "Nearly half of the population reports that these situations occur 'sometimes' or 'frequently,' which is particularly concerning given that the negative health impacts of an imbalance between work life and private life are well-documented."

The authors describe five core sets of findings:

People with college or postgraduate degrees tend to report their work interferes with their personal life more than those with a high school degree;

Professionals tend to report their work interferes with their home life more than people in all other occupational categories;

Several job-related demands predict more work seeping into the home life: interpersonal conflict at work, job insecurity, noxious environments, and high-pressure situations; however, having control over the pace of one's own work diminishes the negative effects of high-pressure situations;

Several job-related resources also predict more work interference with home life: job authority, job skill level, decision-making latitude, and personal earnings;

As predicted, working long hours (50-plus per week) is associated with more work interference at home—surprisingly, however, that relationship is stronger among people who have some or full control over the timing of their work;

"We found several surprising patterns," says Schieman. "People who are well-educated, professionals and those with job-related resources report that their work interferes with their personal lives more frequently, reflecting what we refer to as 'the stress of higher status.' While many benefits undoubtedly accrue to those in higher status positions and conditions, a downside is the greater likelihood of work interfering with personal life."

For more information on the study, appearing in the December 2009 issue of the journal American Sociological Review, please contact:

Scott Schieman, lead author: 416-946-5905 or scott.schieman@utoronto.ca

April Kemick, media relations officer: 416-978-5949 or april.kemick@utoronto.ca

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>