Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do words hurt?

31.03.2010
Psychologists of Jena University, Germany, show that verbal stimuli activate pain matrix

"Watch out, it'll hurt for a second." Not only children but also many adults get uneasy when they hear those words from their doctor. And, as soon as the needle touches their skin the piercing pain can be felt very clearly. "After such an experience it is enough to simply imagine a needle at the next vaccination appointment to activate our pain memory", knows Prof. Dr. Thomas Weiss from the Friedrich-Schiller-University Jena.

As the scientist and his team from the Dept. of Biological and Clinical Psychology could show in a study for the first time it is not only the painful memories and associations that set our pain memory on the alert. "Even verbal stimuli lead to reactions in certain areas of the brain", claims Prof. Weiss. As soon as we hear words like "tormenting", "gruelling" or "plaguing", exactly those areas in the brain are being activated which process the corresponding pain. The psychologists from Jena University were able to examine this phenomenon using functional magnetic resonance tomography (fMRT). In their study they investigated how healthy subjects process words associated with experiencing pain. In order to prevent reactions based on a plain negative affect the subjects were also confronted with negatively connotated words like "terrifying", "horrible" or "disgusting" besides the proper pain words.

"Subject performed two tasks", explains Maria Richter, doctoral candidate in Weiss's team. "In a first task, subjects were supposed to imagine situations which correspond to the words", the Jena psychologist says. In a second task, subjects were also reading the words but they were distracted by a brain-teaser. "In both cases we could observe a clear activation of the pain matrix in the brain by pain-associated words", Maria Richter states. Other negatively connotated words, however, do not activate those regions. Neither for neutrally nor for positively connotated words comparable activity patterns could be examined.

Can words intensify chronic pain?

"These findings show that words alone are capable of activating our pain matrix", underlines Prof. Weiss. To save painful experiences is of biological advantage since it allows us to avoid painful situations in the future which might be dangerous for our lives. "However, our results suggest as well that verbal stimuli have a more important meaning than we have thought so far." For the Jena psychologist the question remains open which role the verbal confrontation with pain plays for chronic pain patients. "They tend to speak a lot about their experiencing of pain to their physician or physiotherapist", Maria Richter says. It is possible that those conversations intensify the activity of the pain matrix in the brain and therefore intensify the pain experience. This is what the Jena psychologists want to clarify in another study.

And so far it won't do any harm not to talk too much about pain. Maybe then the next injection will be only half as painful.

Original article:

Richter M, Eck J, Straube T, Miltner WHR, Weiss T. Do words hurt? Brain activation during explicit and implicit processing of pain words. Pain. 2010;148(2):198-205.

Professor Dr. Thomas Weiss | EurekAlert!
Further information:
http://www.uni-jena.de

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>