Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood not so green a biofuel

12.06.2013
New Dartmouth-led study finds logging may have greater impact on carbon emissions than previously thought

Using wood for energy is considered cleaner than fossil fuels, but a Dartmouth College-led study finds that logging may release large amounts of carbon stored in deep forest soils. The results appear in the journal Global Change Biology-Bioenergy: http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12044/abstract

Global atmospheric studies often don't consider carbon in deep (or mineral) soil because it is thought to be stable and unaffected by timber harvesting. But the Dartmouth findings show deep soil can play an important role in carbon emissions in clear-cutting and other intensive forest management practices. The findings suggest that calls for an increased reliance on forest biomass be re-evaluated and that forest carbon analyses are incomplete unless they include deep soil, which stores more than 50 percent of the carbon in forest soils.

"Our paper suggests the carbon in the mineral soil may change more rapidly, and result in increases in atmospheric carbon dioxide, as a result of disturbances such as logging," said Dartmouth Professor Andrew Friedland, a co-author. "Our paper suggests that increased reliance on wood may have the unintended effect of increasing the transfer of carbon from the mineral soil to the atmosphere. So the intended goal of reducing carbon in the atmosphere may not be met."

The federal government is looking to wood, wind, solar, hydropower and other renewable energy sources to address concerns about climate change and energy security. Woody biomass, which includes trees grown on plantations, managed natural forests and logging waste, makes up about 75 percent of global biofuel production. Mineral soil carbon responses can vary highly depending on harvesting intensity, surface disturbance and soil type.

"Analysis of forest carbon cycles is central to understanding and mitigating climate change, and understanding forest carbon cycles requires an in-depth analysis of the storage in and fluxes among different forest carbon pools, which include aboveground live and dead biomass, as well as the belowground organic soil horizon, mineral soil horizon and roots," Friedland said.

Co-authors included Dartmouth's Thomas Buchholz, a former post-doctoral student, and Claire Hornig, a recent undergraduate student, and researchers from the University of Vermont, Lund University in Sweden and the Vermont Department of Forest, Parks and Recreation. The research was supported by awards to Friedland from the Northeastern States Research Cooperative and the Porter Fund.

Friedland's research focuses on understanding the effects of atmospheric deposition of pollutants and biomass harvesting on elemental cycling processes in high-elevation forests in the Northeastern United States. He considers many elements including carbon, trace elements such as lead and major elements such as nitrogen and calcium. He also is examining issues related to personal choices, energy use and environmental impact.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu
http://www.dartmouth.edu/~opa/radio-tv-studios/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>