Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood not so green a biofuel

12.06.2013
New Dartmouth-led study finds logging may have greater impact on carbon emissions than previously thought

Using wood for energy is considered cleaner than fossil fuels, but a Dartmouth College-led study finds that logging may release large amounts of carbon stored in deep forest soils. The results appear in the journal Global Change Biology-Bioenergy: http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12044/abstract

Global atmospheric studies often don't consider carbon in deep (or mineral) soil because it is thought to be stable and unaffected by timber harvesting. But the Dartmouth findings show deep soil can play an important role in carbon emissions in clear-cutting and other intensive forest management practices. The findings suggest that calls for an increased reliance on forest biomass be re-evaluated and that forest carbon analyses are incomplete unless they include deep soil, which stores more than 50 percent of the carbon in forest soils.

"Our paper suggests the carbon in the mineral soil may change more rapidly, and result in increases in atmospheric carbon dioxide, as a result of disturbances such as logging," said Dartmouth Professor Andrew Friedland, a co-author. "Our paper suggests that increased reliance on wood may have the unintended effect of increasing the transfer of carbon from the mineral soil to the atmosphere. So the intended goal of reducing carbon in the atmosphere may not be met."

The federal government is looking to wood, wind, solar, hydropower and other renewable energy sources to address concerns about climate change and energy security. Woody biomass, which includes trees grown on plantations, managed natural forests and logging waste, makes up about 75 percent of global biofuel production. Mineral soil carbon responses can vary highly depending on harvesting intensity, surface disturbance and soil type.

"Analysis of forest carbon cycles is central to understanding and mitigating climate change, and understanding forest carbon cycles requires an in-depth analysis of the storage in and fluxes among different forest carbon pools, which include aboveground live and dead biomass, as well as the belowground organic soil horizon, mineral soil horizon and roots," Friedland said.

Co-authors included Dartmouth's Thomas Buchholz, a former post-doctoral student, and Claire Hornig, a recent undergraduate student, and researchers from the University of Vermont, Lund University in Sweden and the Vermont Department of Forest, Parks and Recreation. The research was supported by awards to Friedland from the Northeastern States Research Cooperative and the Porter Fund.

Friedland's research focuses on understanding the effects of atmospheric deposition of pollutants and biomass harvesting on elemental cycling processes in high-elevation forests in the Northeastern United States. He considers many elements including carbon, trace elements such as lead and major elements such as nitrogen and calcium. He also is examining issues related to personal choices, energy use and environmental impact.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu
http://www.dartmouth.edu/~opa/radio-tv-studios/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>