Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With climate changing, Southern plants do better than Northern locals

21.05.2014

Can plants and animals evolve to keep pace with climate change? A study published May 19 in the journal Proceedings of the National Academy of Sciences shows that for at least one widely-studied plant, the European climate is changing fast enough that strains from Southern Europe already grow better in the north than established local varieties.


Arabidopsis thaliana

(Source: Wikipedia)

Small and fast-growing, Arabidopsis thaliana is widely used as the “lab mouse” of plant biology. The plant grows in Europe from Spain to Scandinavia and because Arabidopsis is so well-studied, there is a reference collection of seeds derived from wild stocks across its native range. Originally collected from 20 to 50 years ago, these plants have since been maintained under controlled conditions in the seed bank.

Johanna Schmitt, formerly at Brown University and now a distinguished professor in the UC Davis Department of Evolution and Ecology, and colleagues took banked seed samples originally from Spain, England, Germany and Finland and raised all the plants in gardens in all four locations.

... more about:
»Arabidopsis »Science »species »strains »thaliana »varieties

“The southern imports do better across the range than locals,” Schmitt said.

“This shows that the adaptive optimum has moved really fast.”

Seed stocks banked decades ago may no longer be the best for their locations of origin, she said, although they still may be critical for preserving genetic diversity, especially from warmer parts of the species range that may facilitate adaptation to future climates.

Whether wild Arabidopsis can evolve fast enough to thrive in warming conditions, or southern varieties move north fast enough to replace northern strains, remains an open question, Schmitt said.

Arabidopsis is a fast-growing, short-lived species. For forest managers, there is another question: can trees that sprouted 30 or 40 years ago adapt in place to a rapidly changing climate?

“This is a concern for foresters — trees live a long time, but will they die if the climate rug is pulled out from under them?” Schmitt said.

Coauthors on the study are Amity Wilczek, Martha Cooper and Tonia Korves, all at Brown University. The study was supported by the National Science Foundation.

Andy Fell | Eurek Alert!
Further information:
http://blogs.ucdavis.edu/egghead/2014/05/20/with-climate-changing-southern-plants-do-better-than-northern-locals/

Further reports about: Arabidopsis Science species strains thaliana varieties

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>