Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your wine glass and whether you hold it determines how much you pour

30.09.2013
After a long week, you relax and pour yourself a glass of wine—but could the wine glass you choose cause you to pour more than you think?

After witnessing how environmental cues like plate size and food labels impact eating behaviors, researchers decided to take a look at how similar factors impact drinking experiences.

In their new study by Doug Walker, Laura Smarandescu, and Brian Wansink, drinkers unintentionally poured larger servings when their glasses were wider, when the pourers held them in their hands, and when the glassware matched the wine.

For this study, the researchers recruited 73 students (all of legal drinking age) who drank at least one glass of wine a week. The students were brought to several different stations and were asked to pour themselves a normal serving of wine. At each of these stations, the researchers manipulated environmental cues to measure their effects.

They used three different types of wine glasses to test the effect of size and shape: Large, Wide, or Standard. To see if participants subconsciously drank more when they anticipated a meal, some stations featured a large or small place setting. To examine the effects of pouring position, students either poured their wine into a glass they were holding or into glass placed on a table. To examine the visual effects of color contrast, there was either low contrast between the wine and the glass (white wine in a clear glass) or high contrast (red wine in a clear glass).

As the researchers suspected, several environmental cues lead to over pouring. When glasses were wider, participants poured 11.9% wine. The students poured 12.2% more wine when they were holding their glasses, compared to pouring into glasses placed on a table. When there was low contrast between the glass and the wine (white wine in a clear glass), participants poured 9.2% more wine than when there was high contrast (red wine in a clear glass).

Now you know that you’re likely to overpour if you choose a wide glass, hold your glass while serving, or select a wine that matches your glass—but the good news is that, retrospectively, people seem to be aware of how these cues influence their pours.

After each student finished the study, researchers asked them to rate the degree to which they felt each element impacted them. Overall, the students were highly accurate; they rated glass width, color contrast, and glass-holding as most influential, and those three factors had indeed lead to the most significant overpouring.

Being aware of the wine cues that impact pouring can help drinkers monitor their intake. However, knowing that you’ll pour more into a wide glass is different than knowing just how many ounces you’ll pour. When trying to monitor your alcohol consumption accurately, realize that you may be serving yourself 12% more alcohol than you originally planned. When given the option, choose a narrower glass, place your glass on a table before pouring, and select a wine that does not match your glass to avoid unintentionally over-serving!

Sandra Cuellar | EurekAlert!
Further information:
http://www.cornell.edu
http://foodpsychology.cornell.edu/op/wine

Further reports about: drinking experiences environmental cues red wine

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>