Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your wine glass and whether you hold it determines how much you pour

30.09.2013
After a long week, you relax and pour yourself a glass of wine—but could the wine glass you choose cause you to pour more than you think?

After witnessing how environmental cues like plate size and food labels impact eating behaviors, researchers decided to take a look at how similar factors impact drinking experiences.

In their new study by Doug Walker, Laura Smarandescu, and Brian Wansink, drinkers unintentionally poured larger servings when their glasses were wider, when the pourers held them in their hands, and when the glassware matched the wine.

For this study, the researchers recruited 73 students (all of legal drinking age) who drank at least one glass of wine a week. The students were brought to several different stations and were asked to pour themselves a normal serving of wine. At each of these stations, the researchers manipulated environmental cues to measure their effects.

They used three different types of wine glasses to test the effect of size and shape: Large, Wide, or Standard. To see if participants subconsciously drank more when they anticipated a meal, some stations featured a large or small place setting. To examine the effects of pouring position, students either poured their wine into a glass they were holding or into glass placed on a table. To examine the visual effects of color contrast, there was either low contrast between the wine and the glass (white wine in a clear glass) or high contrast (red wine in a clear glass).

As the researchers suspected, several environmental cues lead to over pouring. When glasses were wider, participants poured 11.9% wine. The students poured 12.2% more wine when they were holding their glasses, compared to pouring into glasses placed on a table. When there was low contrast between the glass and the wine (white wine in a clear glass), participants poured 9.2% more wine than when there was high contrast (red wine in a clear glass).

Now you know that you’re likely to overpour if you choose a wide glass, hold your glass while serving, or select a wine that matches your glass—but the good news is that, retrospectively, people seem to be aware of how these cues influence their pours.

After each student finished the study, researchers asked them to rate the degree to which they felt each element impacted them. Overall, the students were highly accurate; they rated glass width, color contrast, and glass-holding as most influential, and those three factors had indeed lead to the most significant overpouring.

Being aware of the wine cues that impact pouring can help drinkers monitor their intake. However, knowing that you’ll pour more into a wide glass is different than knowing just how many ounces you’ll pour. When trying to monitor your alcohol consumption accurately, realize that you may be serving yourself 12% more alcohol than you originally planned. When given the option, choose a narrower glass, place your glass on a table before pouring, and select a wine that does not match your glass to avoid unintentionally over-serving!

Sandra Cuellar | EurekAlert!
Further information:
http://www.cornell.edu
http://foodpsychology.cornell.edu/op/wine

Further reports about: drinking experiences environmental cues red wine

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>