Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Windy Cities: Researchers Invent New Tool to Calculate Hurricane Risk

04.08.2010
Bad news, Miami. Of all Florida’s major population centers, the city is the most vulnerable to strong hurricane winds, according to Florida State University researchers who developed a new tool to estimate the frequency of extreme hurricane winds at a particular location.

Geography doctoral student Jill C. Malmstadt, working with Professor James B. Elsner and research consultant Thomas H. Jagger, created the Hurricane Risk Calculator and used it to estimate the risk to 12 cities in Florida. The findings are outlined in “Risk of Strong Hurricane Winds to Florida Cities,” to be published in the November issue of the American Meteorological Society’s Journal of Applied Meteorology and Climatology.

“Not unexpectedly, we found that the extreme wind risk from hurricanes varies across the state,” Malmstadt said. “Areas in the northeast, such as Jacksonville and in the Big Bend between Tampa and Tallahassee, have longer periods between occurrences of a given strong wind speed compared to areas such as Miami and Pensacola. That’s also where we found the highest annual threats of a catastrophic hurricane event.”

Using the Hurricane Risk Calculator, the researchers found that Miami can expect to see winds of 112 mph or stronger — that’s a category 3 hurricane —once every 12 years on average. Miami last saw winds of that strength with Hurricane Wilma in 2005. By contrast, Tallahassee, the state’s least vulnerable city, can expect to see winds of that speed only once every 500 years.

The Hurricane Risk Calculator is a statistical model based on extreme value theory — a theory that is used to estimate the occurrence of the rare and extreme events like hurricanes Andrew and Katrina, Malmstadt said. Researchers applied the theory to wind speed data derived from the National Hurricane Center’s Hurricane Database, which is the official record of tropical cyclones for the Atlantic Ocean, Gulf of Mexico and Caribbean Sea dating back to 1851.

“This method is unique because it uses extreme value distributions that allow us to better estimate extreme events,” Malmstadt said. “Other approaches use various distributions that work incredibly well when trying to estimate the average event, like category 1 or 2 hurricanes. They may be underestimating or overestimating the extremes even if they are right on with the average.”

The Hurricane Risk Calculator can provide important information to emergency planners, the insurance industry and homeowners, Malmstadt said, noting that the state of Florida especially has experienced more than $450 billion in damages from hurricanes since the early 20th century.

“Hurricanes top the list of the most destructive and costly natural disasters in the United States,” she said. “For society to better cope with and mitigate these disasters, a more precise estimate of the risk of high winds on the local level is needed. The Hurricane Risk Calculator does that.”

Florida is particularly vulnerable to hurricanes because warm seas surround the state, but some locations are even more vulnerable than others. Along with Miami, its South Florida neighbors Port St. Lucie, Key West and Cape Coral are the cities with the highest wind strength and shortest return periods.

Gulf Coast cities Pensacola and Panama City are no strangers to strong hurricane winds, although their locations in the western Panhandle mean they are protected somewhat by the Florida peninsula itself from winds coming from the southeast. Still, Pensacola can expect to see a hurricane with 112 mph winds once every 24 years, according to Malmstadt.

The cities of Orlando, Tampa and Jacksonville join Tallahassee as the cities with the least vulnerability.

Still, Malmstadt cautioned that “people who live anywhere in Florida could receive a hurricane threat, so they should always be ready and prepared for one of the extremes.”

The researchers also used the data that went into the Hurricane Risk Calculator to determine whether the wind risk from hurricanes is changing over time. Although they found that the frequency of hurricanes and major hurricanes is constant throughout time, there is an upward trend in the intensity of the strongest hurricanes in Florida. Intensification refers to the amount of increase in maximum wind speeds between hourly observations of a given hurricane.

“The strongest hurricanes appear to be getting stronger,” Malmstadt said. “This is consistent with the increasing ocean heat content noted over the Gulf of Mexico and the western Caribbean.”

However, the greater intensification rates do not necessarily mean that hurricanes are more intense at the point of landfall, she said, adding that additional study is needed to make that determination.

The National Science Foundation, the Risk Prediction Initiative of the Bermuda Institute for Ocean Studies and the Florida Catastrophic Storm Risk Management Center provided support for this study.

CONTACT: Jill Malmstadt
(414) 704-2432; jcm07d@fsu.edu

Jill Malmstadt | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>