Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind and solar can reliably supply 25 percent of Oahu's electricity need, new study shows

18.03.2011
When combined with on-Oahu wind farms and solar energy, the Interisland Wind project planned to bring 400 megawatts (MW) of wind power from Molokai and Lanai to Oahu could reliably supply more than 25% of Oahu's projected electricity demand, according to the Oahu Wind Integration Study (OWIS).

For the purposes of the research project, the OWIS released today studied the impact on the Oahu grid of a total of 500 MW of wind energy and a nominal 100 MW of solar power, though a good deal more utility-scale and customer-sited solar power is expected on Oahu.

The study found that the 500 MW of wind and 100 MW of solar power could eliminate the need to burn approximately 2.8 million barrels of low sulfur fuel oil (LSFO) and 132,000 tons of coal each year while maintaining system reliability, if a number of recommendations are incorporated, including:

Provide state-of-the-art wind power forecasting to help anticipate the amount of power that will be available from wind;

Increase power reserves (the amount of power that can be called upon from operating generators) to help manage wind variability and uncertainty in wind power forecasts;

Reduce minimum stable operating power of baseload generating units to provide more power reserves;

Increase ramp rates (the time it takes to increase or decrease output) of Hawaiian Electric's thermal generating units;

Implement severe weather monitoring to ensure adequate power generation is available during periods of higher wind power variability;

Evaluate other resources capable of contributing reserve, such as fast-starting thermal generating units and load control programs.

The study notes that assuring reliability will require further studies, upgrades to existing and new infrastructure, as well as specific requirements on the wind farms to be connected to the Oahu system. With these and other proposed changes, the technical analysis suggests, Oahu can accommodate increased wind and solar projects with minimal limits on output of renewable resources.

The Oahu Wind Integration Study was conducted by the Hawaii Natural Energy Institute (HNEI) at the University of Hawaii at Manoa, General Electric (GE) Company and the Hawaiian Electric Company (HECO). The National Renewable Energy Laboratory (NREL), part of the U.S. Department of Energy (US DOE), assembled a technical review committee with representatives of industry and academia which met throughout the project to review findings. NREL also contracted the private firm AWS Truepower to develop wind and solar power profiles that were used in the study.

"The findings of this study show it is feasible to integrate large-scale wind and solar projects on Oahu but also have value beyond Hawaii. Both large mainland utilities and relatively small and/or isolated grids that wish to integrate significant amounts of renewable energy while maintaining reliability for their customers can learn from this study," said Dr. Rick Rocheleau, HNEI director.

Projects such as this one that enable increased implementation of alternative energy sources are made possible by the efforts of U.S. Senator Daniel Inouye, Senate appropriations chair, to ensure that the Department of Energy is adequately resourced to make these critical investments in energy technology. Additional funding was provided by Hawaiian Electric Company.

"GE has been working closely with HNEI and HECO to assess innovative solutions to help Oahu meet its electricity demand with very high levels of renewable resources," said Hamid Elahi, GE Energy Consulting general manager. "GE is proud to be working closely with HECO and other forward-thinking utilities which are leading the industry in solving some of the most important challenges that face our grids."

Robbie Alm, Hawaiian Electric executive vice president, said, "To reach our renewable energy goals we need to use all the resources available to us. For Oahu, this includes the utility-scale solar, roof-top solar, waste-to-energy and on-island wind that we are pursuing. But on-island resources are not enough to meet Oahu's power needs.

"We know that more solar power is possible on Oahu than was studied by the OWIS. However, this baseline study is an essential first step for the Interisland Wind Project. It shows that the technology may present challenges but these can be overcome. The questions now are financing, environmental impact and whether the effected communities can live with the project with community benefits. "

The Oahu Wind Integration Study is now available on-line at www.hnei.hawaii.edu. More information on Hawaiian Electric's progress in adding renewable energy can be found at www.heco.com.

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>