Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind and solar can reliably supply 25 percent of Oahu's electricity need, new study shows

18.03.2011
When combined with on-Oahu wind farms and solar energy, the Interisland Wind project planned to bring 400 megawatts (MW) of wind power from Molokai and Lanai to Oahu could reliably supply more than 25% of Oahu's projected electricity demand, according to the Oahu Wind Integration Study (OWIS).

For the purposes of the research project, the OWIS released today studied the impact on the Oahu grid of a total of 500 MW of wind energy and a nominal 100 MW of solar power, though a good deal more utility-scale and customer-sited solar power is expected on Oahu.

The study found that the 500 MW of wind and 100 MW of solar power could eliminate the need to burn approximately 2.8 million barrels of low sulfur fuel oil (LSFO) and 132,000 tons of coal each year while maintaining system reliability, if a number of recommendations are incorporated, including:

Provide state-of-the-art wind power forecasting to help anticipate the amount of power that will be available from wind;

Increase power reserves (the amount of power that can be called upon from operating generators) to help manage wind variability and uncertainty in wind power forecasts;

Reduce minimum stable operating power of baseload generating units to provide more power reserves;

Increase ramp rates (the time it takes to increase or decrease output) of Hawaiian Electric's thermal generating units;

Implement severe weather monitoring to ensure adequate power generation is available during periods of higher wind power variability;

Evaluate other resources capable of contributing reserve, such as fast-starting thermal generating units and load control programs.

The study notes that assuring reliability will require further studies, upgrades to existing and new infrastructure, as well as specific requirements on the wind farms to be connected to the Oahu system. With these and other proposed changes, the technical analysis suggests, Oahu can accommodate increased wind and solar projects with minimal limits on output of renewable resources.

The Oahu Wind Integration Study was conducted by the Hawaii Natural Energy Institute (HNEI) at the University of Hawaii at Manoa, General Electric (GE) Company and the Hawaiian Electric Company (HECO). The National Renewable Energy Laboratory (NREL), part of the U.S. Department of Energy (US DOE), assembled a technical review committee with representatives of industry and academia which met throughout the project to review findings. NREL also contracted the private firm AWS Truepower to develop wind and solar power profiles that were used in the study.

"The findings of this study show it is feasible to integrate large-scale wind and solar projects on Oahu but also have value beyond Hawaii. Both large mainland utilities and relatively small and/or isolated grids that wish to integrate significant amounts of renewable energy while maintaining reliability for their customers can learn from this study," said Dr. Rick Rocheleau, HNEI director.

Projects such as this one that enable increased implementation of alternative energy sources are made possible by the efforts of U.S. Senator Daniel Inouye, Senate appropriations chair, to ensure that the Department of Energy is adequately resourced to make these critical investments in energy technology. Additional funding was provided by Hawaiian Electric Company.

"GE has been working closely with HNEI and HECO to assess innovative solutions to help Oahu meet its electricity demand with very high levels of renewable resources," said Hamid Elahi, GE Energy Consulting general manager. "GE is proud to be working closely with HECO and other forward-thinking utilities which are leading the industry in solving some of the most important challenges that face our grids."

Robbie Alm, Hawaiian Electric executive vice president, said, "To reach our renewable energy goals we need to use all the resources available to us. For Oahu, this includes the utility-scale solar, roof-top solar, waste-to-energy and on-island wind that we are pursuing. But on-island resources are not enough to meet Oahu's power needs.

"We know that more solar power is possible on Oahu than was studied by the OWIS. However, this baseline study is an essential first step for the Interisland Wind Project. It shows that the technology may present challenges but these can be overcome. The questions now are financing, environmental impact and whether the effected communities can live with the project with community benefits. "

The Oahu Wind Integration Study is now available on-line at www.hnei.hawaii.edu. More information on Hawaiian Electric's progress in adding renewable energy can be found at www.heco.com.

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>