Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildlife need more complex travel plans

21.10.2008
A new UC Davis study says that people trying to help nature by designing corridors for wildlife need to think more naturally.

"Human beings tend to think in terms of regular, symmetrical structures, but nature can be much more irregular," said UC Davis postdoctoral researcher Matthew Holland, the study's lead author. "We found that symmetrical systems of corridors may actually do less good for natural communities than designs with some randomness or asymmetry built in."

Corridors are physical connections between disconnected fragments of plant and animal habitat. A corridor can be as big as a swath of river and forest miles wide that links two national parks, or as small as a tunnel under an interstate highway.

Without such connections, animals cannot travel to food, water, mates and shelter. Plants cannot disperse their pollen and seeds to maintain healthy, genetically diverse populations.

Designing and implementing corridors (sometimes called corridor ecology or connectivity conservation) is a new subfield in environmental science. Holland's research is among the first to help land managers and community planners designing corridors to know what will work and what will not.

Holland's co-author is UC Davis theoretical ecologist Alan Hastings. Hastings is one of the world's mostly highly regarded experts in using mathematical models (sets of equations) to understand natural systems. His analyses have shed light on environmental issues as diverse as salt marsh grass invasions in San Francisco Bay; climate change and coral reefs; and marine reserves and fish populations. In 2006, Hastings received the Robert H. MacArthur Award, the highest honor given by the Ecological Society of America.

Matt Holland | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Wildlife animal habitat corridors for wildlife plant habitat

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>