Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildfires set to increase 50% by 2050

31.07.2009
The area of forest burnt by wildfires in the United States is set to increase by over 50% by 2050, according to research by climate scientists.

The study predicts that the worst affected areas will be the forests in the Pacific Northwest and the Rocky Mountains, where the area of forest destroyed by wildfire is predicted to increase by 78% and 175% respectively.

The research is based on a conservative temperature increase of 1.6 degrees Celsius over the next 40 years.

Published in the Journal of Geophysical Research, scientists also say that the increase in wildfires will lead to significant deterioration of the air quality in the western United States due to greater presence of smoke.

“Wildfires, such as those in California earlier this year, are a serious problem in the United States and this research shows that climate change is going to make things significantly worse,” says Dr Dominick Spracklen, from the School of Earth and Environment at the University of Leeds who is the lead author of the research.

“Our research shows that wildfires are strongly influenced by temperature. Hotter temperatures lead to dryer forests resulting in larger and more serious fires,” explains Spracklen.

“In the Rocky Mountains we are predicting that the area burnt by wildfires will almost triple by 2050.”

Scientists used data documenting the area of forest burned on federal land since 1980 along with weather data from the United States Department of Agriculture Forest Service, to construct a computer model that takes into account the factors that can best predict the area burned in each ecosystem in the western US.

Significantly, the research also predicts a 40% increase in the western United States in the concentration of tiny soot particles in the air, known to scientists as organic carbon aerosol. This will have important consequences on western US air quality and visibility.

“The US government has introduced legislation to try to improve air quality and visibility by 2064. Currently the main focus for environment agencies and campaigners is industry, but this research shows that, especially in the western US, wildfires will become an increasing source of air pollution,” explains Dr Spracklen.

This work was funded by the U.S. Environmental Protection Agency (EPA) and National Aeronautics and Space Administration. Dr Dominick Spracklen carried out the research whilst at Harvard’s School of Engineering and Applied Sciences (SEAS) in collaboration with Jennifer Logan and Loretta Mickley.

For further information
Dominick Spracklen is available for interview, Tel: +44 113 343 7488, or email: d.spracklen@see.leeds.ac.uk

Or contact Clare Ryan, University of Leeds press office, Tel: +44 113 343 8059, Email: c.s.ryan@leeds.ac.uk

Notes to editors
The paper ‘Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States’, published in the Journal of Geophysical Research, is available to journalists on request.

Dr Dominick Spracklen is a research fellow in the School of Earth and Environment, University of Leeds.

The University of Leeds is one of the largest higher education institutions in the UK with more than 30,000 students from 130 countries and a turnover of £450m. The University is a member of the Russell Group of research-intensive universities and the 2008 Research Assessment Exercise showed it to be the UK’s eighth biggest research powerhouse. The University’s vision is to secure a place among the world’s top 50 by 2015. www.leeds.ac.uk

The School of Earth and Environment is established as one of the leading centres of international excellence across the Earth and Environmental Sciences. In the UK RAE 2008, we ranked second nationally in terms of research power. It focuses on a multidisciplinary approach to understanding our environment, studying the Earth from its core to its atmosphere and examining the social and economic dimensions of sustainability.

Clare Ryan | EurekAlert!
Further information:
http://www.see.leeds.ac.uk/index.htm
http://www.leeds.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>