Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildfires set to increase 50% by 2050

31.07.2009
The area of forest burnt by wildfires in the United States is set to increase by over 50% by 2050, according to research by climate scientists.

The study predicts that the worst affected areas will be the forests in the Pacific Northwest and the Rocky Mountains, where the area of forest destroyed by wildfire is predicted to increase by 78% and 175% respectively.

The research is based on a conservative temperature increase of 1.6 degrees Celsius over the next 40 years.

Published in the Journal of Geophysical Research, scientists also say that the increase in wildfires will lead to significant deterioration of the air quality in the western United States due to greater presence of smoke.

“Wildfires, such as those in California earlier this year, are a serious problem in the United States and this research shows that climate change is going to make things significantly worse,” says Dr Dominick Spracklen, from the School of Earth and Environment at the University of Leeds who is the lead author of the research.

“Our research shows that wildfires are strongly influenced by temperature. Hotter temperatures lead to dryer forests resulting in larger and more serious fires,” explains Spracklen.

“In the Rocky Mountains we are predicting that the area burnt by wildfires will almost triple by 2050.”

Scientists used data documenting the area of forest burned on federal land since 1980 along with weather data from the United States Department of Agriculture Forest Service, to construct a computer model that takes into account the factors that can best predict the area burned in each ecosystem in the western US.

Significantly, the research also predicts a 40% increase in the western United States in the concentration of tiny soot particles in the air, known to scientists as organic carbon aerosol. This will have important consequences on western US air quality and visibility.

“The US government has introduced legislation to try to improve air quality and visibility by 2064. Currently the main focus for environment agencies and campaigners is industry, but this research shows that, especially in the western US, wildfires will become an increasing source of air pollution,” explains Dr Spracklen.

This work was funded by the U.S. Environmental Protection Agency (EPA) and National Aeronautics and Space Administration. Dr Dominick Spracklen carried out the research whilst at Harvard’s School of Engineering and Applied Sciences (SEAS) in collaboration with Jennifer Logan and Loretta Mickley.

For further information
Dominick Spracklen is available for interview, Tel: +44 113 343 7488, or email: d.spracklen@see.leeds.ac.uk

Or contact Clare Ryan, University of Leeds press office, Tel: +44 113 343 8059, Email: c.s.ryan@leeds.ac.uk

Notes to editors
The paper ‘Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States’, published in the Journal of Geophysical Research, is available to journalists on request.

Dr Dominick Spracklen is a research fellow in the School of Earth and Environment, University of Leeds.

The University of Leeds is one of the largest higher education institutions in the UK with more than 30,000 students from 130 countries and a turnover of £450m. The University is a member of the Russell Group of research-intensive universities and the 2008 Research Assessment Exercise showed it to be the UK’s eighth biggest research powerhouse. The University’s vision is to secure a place among the world’s top 50 by 2015. www.leeds.ac.uk

The School of Earth and Environment is established as one of the leading centres of international excellence across the Earth and Environmental Sciences. In the UK RAE 2008, we ranked second nationally in terms of research power. It focuses on a multidisciplinary approach to understanding our environment, studying the Earth from its core to its atmosphere and examining the social and economic dimensions of sustainability.

Clare Ryan | EurekAlert!
Further information:
http://www.see.leeds.ac.uk/index.htm
http://www.leeds.ac.uk

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>