Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild sparrow study traces social behaviors in the field to specific gene

15.01.2014
A unique study of the white-throated sparrow has identified a biological pathway connecting variation in the birds’ aggression and parenting behaviors in the wild to variation in their genome.

The Proceedings of the National Academy of Sciences (PNAS) is publishing the results of the experiments, conducted by the lab of neuroscientist Donna Maney in Emory University’s Department of Psychology.


The white-striped morph of the white-throated sparrow, left, and the tan-striped morph, right. The two morphs and the resulting color difference occur in both sexes. Photos by Brent Horton

The research, which comprised behavioral observations of the study subjects in the field and laboratory analyses of their gene expression in the brain, showed that variation in the expression of the estrogen receptor alpha (ER-alpha) gene strongly predicts the birds’ behavior.

“We believe this is the most comprehensive study yet of how the rearrangement of a chromosome affects social behavior in a vertebrate,” says Brent Horton, a post-doctoral fellow in the Maney lab and lead author of the study. “So much of the process of genetic discovery is restricted behind closed doors in a laboratory. But our study began in the woods, where we first observed the social behaviors of the actual subjects of our experiments in their natural setting. The results provide valuable insight into the mechanistic basis of aggression and parenting in all vertebrates, including humans.”

Such integrated studies “are exceedingly rare,” Horton adds, “because they require such a variety of resources, expertise and well-balanced collaboration.”

In addition to Horton and Maney, the principal investigators included Eric Ortlund, a biochemist and an expert in the ER-alpha gene at the Emory School of Medicine; and James Thomas, a human geneticist who was formerly with Emory and now works at the National Institutes of Health. Co-authors include William Hudson, a graduate fellow in Ortland’s lab; Wendy Zinzow-Kramer, a post-doc in the Maney lab; Sandra Shirk, a research associate; and Emily Young, an undergraduate student of biology at Georgia Tech.

The white-throated sparrow is considered a good model organism for the genetic basis of behavior due to a genetic event that has divided the species into two distinct forms that differ in their behavior. These two forms, the white-striped morph and the tan-striped morph, are easily distinguished by their plumage markings.

At some point during the evolution of the species, a chromosome broke and flipped. This process, called an inversion, rearranged the sequence of the chromosome.

The white-striped birds, which all possess at least one copy of the rearranged chromosome, tend to be more aggressive and less parental than the tan-striped birds, which do not have the rearranged chromosome.

“The two morphs work beautifully in evolution because one color morph almost always mates with the opposite color morph,” Horton says. “They complement each other.”

For the past decade, the Maney lab has been a leader in documenting the neuroendocrine and genetic differences between the white-throated sparrow morphs. For the current study, funded by the National Institutes of Health, Maney recruited Horton, a field biologist and an expert in the natural history of the white-throated sparrow.

“At heart, I’m a behavioral ecologist,” Horton says. “I want to integrate neuroscience and genetics into my work to understand the behaviors that I see in the wild.”

The scientists knew that the different behaviors of the two sparrow morphs were linked to the chromosome inversion. “We wanted to know what genes captured by that chromosome also differ between the morphs, in order to identify the genetic mechanisms that may explain the behavioral differences,” Horton says.

The white-throated sparrow winters in the South, but mates and raises its young during spring and summer in the North. “In a sense, I migrated with these birds,” Horton says, explaining how he conducted fieldwork over three years. Each summer, he packed up his family and left Atlanta for Argyle, Maine, to tag birds for the study and spend weeks observing their behaviors in a forest.

White-throated sparrows nest on the ground under shrubs or low in trees. They are one of the most common birds seen in the forest and at suburban bird feeders. Their distinctive song is often likened to the phrase, “Old Sam Peabody … Peabody.”

To measure parental behaviors in the birds, Horton recorded the number of feeding trips they made for their young during a specified time. To measure aggression, he recorded their song rate in response to a simulated territorial intrusion: A live sparrow in a cage was displayed in the breeding territory of the wild study subjects, accompanied by the broadcast of a male song.

“The song of the birds is a form of aggression,” Horton explains. “They’re saying ‘get out of my territory.’ The rate at which they sing gives a measure of their level of aggression.”

The field observations were followed by laboratory analyses of the study subjects, to hone in on differences in their neuroendocrine gene expression. The researchers focused on ER-alpha as a primary candidate, since it is one of the genes captured by the chromosome inversion and had been previously linked to social behaviors in vertebrates.

Their analyses documented how the genetic differentiation between the morphs affects the transcription of ER-alpha. In one brain region thought to be important for aggression, white-striped birds had three times the level of ER-alpha than did the tan-striped birds. By looking at both the behavioral data and the lab data together, the researchers found the expression of ER-alpha in that region and others predicted variation in territorial aggression and parenting.

“The behaviors that differ between the morphs are known to rely on sex steroid hormones such as testosterone,” Maney says. “But we already showed in 2009 that even when their testosterone levels are equal, the white-striped males still sing more than the tan-striped males. This finding led us to suspect that brain sensitivity to hormones differs between the morphs. ER-alpha has a hormone receptor that makes the brain sensitive to testosterone, so it makes sense that the white-striped birds have higher levels.”

The researchers hypothesize that the mechanism they have identified may have played a major role in behavioral evolution.

“Humans also show variation in aggression and parenting,” Horton says, “but we know little about what contributes to this variation and how our behavior can in turn affect our brains. This bird gives us important clues about what to look for as we try to understand the complex interplay between genes, proteins and our own social behaviors.”

The ER-alpha findings conclude the first phase of the work. The research team is also investigating a suite of other neuroendocrine genes captured by the chromosome rearrangement that are thought to be important players in the regulation of social behavior.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu
http://esciencecommons.blogspot.de/2014/01/wild-sparrow-study-traces-social.html

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>